作者:俊欣
来源:关于数据分析与可视化
随着各行各业都在进行数字化转型,数据方面的人才也成为了各家企业招聘的重点对象,不同数据类型的岗位提供的薪资待遇又是如何的?哪个城市最需要数据方面的人才、未来的发展前景与钱途又是怎么样的?今天小编抓取了某互联网招聘平台上面的招聘信息,来为大家分析分析。我们大致会讲
我们用Python当中的requests模块来发送与接收请求,然后用BeautifulSoup模块也解析返回的数据,代码如下
@retry(stop=stop_after_attempt(7)) def make_requests(url):
response = requests.get(url=url, headers=headers)
response_1 = BeautifulSoup(response.text, "lxml") return response_1
解析数据的代码如下
def process_data(index, job_title, response_text):
response_2 = response_text.select("div.list__YibNq") for resp in response_2[0]: if resp.select("div.p-top__1F7CL a"):
job_titles = resp.select("div.p-top__1F7CL a")[0].get_text() else:
job_titles = "" if resp.select("span.money__3Lkgq"):
payments = resp.select("span.money__3Lkgq")[0].get_text() else:
payments = "" .........
然后最后将收集到的数据导出到excel当中,代码如下
df = pd.DataFrame(
{"职位名称": job_titles_list, "薪资待遇": payments_list, "工作年限": work_years_list, "公司名称": company_name_list, "所处行业": industry_list, "岗位简介": job_title_description_list}) path = "job_files/" if not os.path.exists(path): os.makedirs(path)
df.to_excel("./job_files/{}_{}.xlsx".format(job_title, index), index = False)
小编这次所抓取的岗位分别有“数据分析师”、“数据挖掘工程师”、“数据产品经理”、“大数据开发工程师”以及“数据运营助理”等等,接下来我们就针对所收集到的数据进行清洗与进一步的处理吧
我们用到的是Pandas模块,首先先导入所有收集到的数据
import pandas as pd import os
df_all = pd.DataFrame(columns=["职位名称", "薪资待遇", "工作年限", "公司名称", "所处行业", "岗位简介"]) for file in os.listdir("./job_files"):
df = pd.read_excel("./job_files/" + file)
df_all = df_all.append(df, ignore_index=True)
我们来看一下最终的数据集长什么样子
print(df_all.info())
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 2238 entries, 0 to 2237 Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 职位名称 2238 non-null object 1 薪资待遇 2238 non-null object 2 工作年限 2238 non-null object 3 公司名称 2238 non-null object 4 所处行业 2234 non-null object 5 岗位简介 2238 non-null object dtypes: object(6)
memory usage: 105.0+ KB
数据集当中或许存在重复的内容,我们用drop_duplicates()方法来进行重复项的去除
df_all_1 = df_all.drop_duplicates()
df_all_1.info()
output
<class 'pandas.core.frame.DataFrame'> Int64Index: 2207 entries, 0 to 2237 Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 职位名称 2207 non-null object 1 薪资待遇 2207 non-null object 2 工作年限 2207 non-null object 3 公司名称 2207 non-null object 4 所处行业 2203 non-null object 5 岗位简介 2207 non-null object dtypes: object(6)
memory usage: 120.7+ KB
df_all_1 = df_all_1.dropna(axis = 0, how = "any")
df_all_1.info()
output
<class 'pandas.core.frame.DataFrame'> Int64Index: 2203 entries, 0 to 2237 Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 职位名称 2203 non-null object 1 薪资待遇 2203 non-null object 2 工作年限 2203 non-null object 3 公司名称 2203 non-null object 4 所处行业 2203 non-null object 5 岗位简介 2203 non-null object dtypes: object(6)
memory usage: 120.5+ KB
接下来为了方便对薪资数据进行统计分析,我们对此也需要进行相对应的处理
df_all_1["薪资待遇"] = df_all_1["薪资待遇"].str.replace("k", "000")
我们先来看薪资上面的差距,根据不同的职位名称来看,例如我们来看“数据产品经理”这个岗位
df_all_1[df_all_1["职位名称"].str.contains("产品经理")]['薪资待遇'].value_counts().head(5)
output
20000-40000 66 15000-30000 48 15000-25000 46 20000-30000 27 25000-50000 26 Name: 薪资待遇, dtype: int64
较多的是集中在20K-40K这个范围当中,具体我们可以通过下面这个可视化的结果来看
我们可以发现的是整体的市场中“数据产品经理”这个岗位的整体待遇是相对更好一点的,其次便是“数据挖掘工程师”这个岗位,薪资一般也比较容易达到20K-40K之间的区间
接下来我们来看一下哪些城市对数据方面的人才需求是最多的,
df_all_1["城市分布"] = df_all_1["职位名称"].apply(lambda x: x.split("[")[1].split("·")[0])
df_all_1["城市分布"].value_counts().head(10)
output
北京 702 上海 446 深圳 404 杭州 194 广州 190 成都 68 武汉 57 西安 23 南京 18 苏州 15 Name: 城市分布, dtype: int64
可以看到的是对于数据方面的人才需求最旺盛的仍然是北京,上海排在第二,与此同时呢,杭州在这方面的需求上面已经超过了广州,位列第四,同时在前十名当中成都、南京以及武汉与西安都纷纷上榜
接下来我们来看一下哪个行业所需要的数据方面的人才最多,
df_all_1["行业"] = df_all_1["所处行业"].apply(lambda x: x.split("|")[0].split("/")[0])
df_all_1["行业"].value_counts().head(10)
output
数据服务 175 内容资讯,短视频 155 软件服务 141 科技金融 114 电商平台 84 IT技术服务 68 企业服务 61 游戏 55 专业服务 52 消费生活 52 Name: 行业, dtype: int64
从上面的结果中看到,除了“数据服务”行业之外,还有“内容咨询、短视频”领域、“软件服务”、“科技金融”、“电商平台”、“IT技术服务”等领域对于数据方面的人才都有着相当旺盛的需求
我们来看一下各家公司对于数据方面的人才,在学历上又有何种要求呢?
df_all_1["学历要求"] = df_all_1["工作年限"].apply(lambda x: x.split("/")[-1])
df_all_1["学历要求"].value_counts()
output
本科 1922 硕士 119 不限 77 大专 73 博士 12 Name: 学历要求, dtype: int64
一般来说仅仅是“本科”的学历就可以了,当然还有少数的公司对于学历的要求是局限在硕士之上
各家公司为了吸引越来越多的人才前往加入公司,也打出了各色各样的标语,小编做了汇总,并且做成词云图,首先我们用jieba模块对文本数据进行分词
word_num = jieba.lcut(text, cut_all = False)
rule = re.compile(r"^[u4e00-u9fa5]+$")
word_num_selected = [word for word in word_num if word not in stop_words and re.search(rule, word) and len(word) >= 2]
接着我们使用stylecloud模块来进行词云图的绘制
stylecloud.gen_stylecloud(text=" ".join(review_list), max_words=100, collocations=False,
font_path="KAITI.ttf", icon_name="fab fa-apple", size=653,
output_name="4.png")
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04