作者:闲欢
来源:Python 技术
作为程序员,我们经常会遇到比较耗时的操作,这个时候我们大多数人会无助地等待程序执行完成,有些人会趁机摸一下鱼,以便渡过这个无聊看起来又有点未知的时间,我就是这样做的。
但是,我们也可以选择另一种方式——用一个炫酷的进度条,来观察处理进度,也可以及时了解程序运行的情况,做到心中有数。
今天就给大家介绍 Python 的一个库—— tqdm ,它就能非常完美的支持和解决这些问题,可以实时输出处理进度而且占用的CPU资源非常少,支持windows、Linux、mac等系统,支持循环处理、多进程、递归处理、还可以结合linux的命令来查看处理情况,等进度展示。
我们常见的安装方式是直接 pip 安装:
pip install tqdm
但是我用这种方式安装的时候报错:
看报错的意思是这个 pypi.org 不是可信网站,于是我加上了:
pip install tqdm --trusted-host pypi.org
结果还是这个报错。
这有点无语了。我接着尝试使用豆瓣的源来进行安装:
pip install -i https://pypi.douban.com/simple tqdm
还是一样的报错。
但是我浏览器访问这个网站没问题:https://pypi.org/project/tqdm/
既然这样,我就把文件下载下来再安装吧。
下载下来之后,我将 whl 文件放在我的项目目录,然后使用命令行安装:
pip install --trusted-host pypi.org tqdm-4.62.3-py2.py3-none-any.whl
这回安装没报错。我再用命令检查一下安装是否成功:
pip show tqdm
命令行成功显示信息:
Name: tqdm Version: 4.62.3 Summary: Fast, Extensible Progress Meter Home-page: https://tqdm.github.io Author: None Author-email: None License: MPLv2.0, MIT Licences Location: c:pworkspacemypyvenvlibsite-packages Requires: colorama Required-by:
折腾了半天,终于安装成功了!
本文的示例都是在 jupyter notebook 环境下运行的,不同环境运行的效果会有差别。
我们进入 tqdm 的源码,可以找到 __init__ 方法:
def __init__(self, iterable=None, desc=None, total=None, leave=True, file=None,
ncols=None, mininterval=0.1, maxinterval=10.0, miniters=None,
ascii=None, disable=False, unit='it', unit_scale=False,
dynamic_ncols=False, smoothing=0.3, bar_format=None, initial=0,
position=None, postfix=None, unit_divisor=1000, write_bytes=None,
lock_args=None, nrows=None, colour=None, delay=0, gui=False,
**kwargs):
从中我们可以看到 tqdm 支持很多参数,下面列一些常见的参数:
直接将可迭代对象传入作为参数,我们来看一下例子:
from tqdm import tqdm from time import sleep for char in tqdm(['h', 'e', 'l', 'l', 'o']):
sleep(0.25) for i in tqdm(range(100)):
sleep(0.05)
实现的进度条效果如下:
这里面的 tqdm(range()) 我们也可以用 tqdm 提供的 trange() 来代替,可以简化代码。
from tqdm.notebook import trange for i in trange(100):
sleep(0.05)
实现的进度条效果如下:
我们还可以为进度条添加描述:
pbar = tqdm(range(5)) for char in pbar:
pbar.set_description("Progress %d" %char) sleep(1)
实现的进度条效果如下:
接下来,我要改变一下进度条的颜色:
我们可以使用 with 语句来手动控制进度条。
with tqdm(total=100) as pbar: for i in range(1, 5): sleep(1) # 更新进度 pbar.update(10*i)
这里我设置进度条的更新的间隔,设置总数为 total=100,然后分四次,使得进度条按 10%,20%,30%,40%的间隔来更新。
实现的进度条效果如下:
接下来, 我要改变一下进度条的颜色:
with tqdm(total=100, colour='yellow') as pbar: for i in range(1, 5): sleep(1) # 更新进度 pbar.update(10*i)
我把进度条改为了黄色。
接下来,我们来个嵌套进度条玩玩。
for i in trange(3, desc='outer loop'): for i in trange(100, desc='inner loop', leave=False): sleep(0.01)
这里我用两层 for 循环实现了嵌套,并且将内层的 参数 leave 设置为 False ,意思是内层的进度条每执行一次都会消失。
我们来看看最终运行的效果:
这个进度条库的使用方法是不是很简单,几行代码就能为我们的程序增色不少。心动不如行动,赶快用起来吧!
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20