CDA数据分析师 出品
作者:Darshil Parmar
编译:Mika
【导读】
数据科学、机器学习和数据工程到底有什么区别?本文带你看懂。
数据科学是一个广泛的领域。
因为它是如此的多样化,我们很难具体定义数据科学家要做些什么。但最重要的是,我们要认识到,数据科学是一个过程,而不仅仅是一个职位名称。
数据科学可以应用于许多不同的领域,可以用来做许多不同的事情。
如今数据科学、机器学习和数据工程正在以非常快的速度发展。
2011-2027年全球大数据市场规模预测
数据来源:Statista
随着数据领域的发展速度加快,许多人对这些领域的概念也有一些错误的认识。
在本文中,我们将带你了解一下数据工程师、数据科学家和机器学习工程师之间的区别。
让我们先了解一下完整的数据项目包括哪些环节。
公司通过各种渠道从客户处收集数据,例如亚马逊,他们可能会收集用户的电子邮件、姓名、年龄、位置等数据。
以及关于用户购买历史和订单的数据,用户搜索关键字和最近查看的项目等。
如今,这些数据有各种形式和格式,数据可能位于不同的表和不同的位置。
任何数据项目的出发点无一例外,都是为了从数据中提取价值,从而帮助企业做出决策,并改进其产品和服务。
这里可以看到一个案例——亚马逊建立的推荐系统,当中将用用户经常购买的产品排列在一起,并根据产品的性能进行排名。
任何数据项目的第一步都是理解。
企业真正需要什么
假设,我们想针对会从已购商品中进行回购的客户建立一个分类器。
我们对所需的最终结果进行定义,可能会根据可用数据而改变,但假设现在一切准备就绪,开始项目开发。
这时数据工程师们就派上用场了。
在数据项目工作中,数据工程师将从各种来源提取数据并编写查询,或使用ETL工具将所有数据集中到一个地方。
数据被储存为各种格式,比如SQL表、CSV文件、JSON文件等。
因此,数据工程师要做的就是对这些数据进行转换,并将所有东西整合在一起。并负责建立数据库模型、模式、表、架构以及数据的整体结构。
一旦数据准备妥当,数据科学家、数据分析师或BI人员就要上场了。
为了便于理解,这里我们用数据科学家来概括这些角色,因为数据科学是一个非常广泛的领域,他们所做的工作内容包罗万象。
现在,数据科学人员有了正确格式的数据,而数据科学家对业务有很好理解,他很清楚需要做些什么来完成工作。
数据科学家需要负责的工作内容有:
由于数据项目需要团队协作,因此有许多人会参与到这个过程。
不是每个人都会清理数据或构建数据可视化,这完全取决于数据人员的技能和角色。
接着就需要机器学习工程师,他们同时拥有软件工程和数据科学方面的知识。
他们使用大数据工具和编程框架,确保从数据管道中收集的原始数据被重新定义为数据科学模型,并根据需要进行扩展。
在这个推荐系统的项目中,我们可能需要实时预测的模型,也需要通过调用API来提供预测的模型。
机器学习工程师的职责是建立机器学习模型,对其进行适当调整,确保模型产生良好的结果,在产品中部署模型。
机器学习工程师使机器能够在自己的编程数据中识别模式,并教会自己理解命令。
结语
现在这三个领域相互依赖,没有哪一个更好的比较,每个领域都有自己的角色、责任和所需的技能,完全取决于你选择哪一个。
现在,这三种职业相互依赖,没有哪个职业更好的说法。在工作项目中,这三者分别都有不同的角色担当,责任和技能要求,选择从事哪一种完全取决于你自己的兴趣。
如果你喜欢构建管道,数据模型和模式,那么成为数据工程师是不错的选择。
如果你更喜欢清理数据、数据可视化和构建仪表盘,那么你可以选择成为一名数据科学家,或者机器学习工程师,前提是你有完成工作所需的知识和技能。
因此不妨问问自己,你更适合哪一种?数据工程师,数据科学家,还是机器学习工程师?欢迎给我们留言哦。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13