作者:俊欣
来源:关于数据分析与可视化
一般提及数据可视化,会Python的读者朋友可能第一时间想到的就是matplotlib模块或者是seaborn模块,而谈及绘制动态图表,大家想到的比较多的是Plotly或者是Pyecharts。
今天小编来为大家介绍另外一个绘制动态图表的模块,使用起来也是非常的便捷,而且绘制出来的图表也是十分的精湛好看,它叫pygal,相比较seaborn等常用的模块相比,该模块的优点有:
因此,pygal模块小编以为还是值得拿出来讲讲的,我们大致会说这些内容:
模块的安装十分的简单,通过pip install就能够实现,
pip install pygal
当然国内的小伙伴要是觉得下载的速度慢,也可以通过加入第三方的镜像来提速
pip install -i http://pypi.douban.com/simple/ pygal
view = pygal.Bar() #图表名 view.title = '柱状图' #添加数据 view.add('数据', [1,3,5,7,9,11]) #在浏览器中查看 #view.render_in_browser() view.render_to_file('bar.svg')
output
我们既可以通过render_to_file()方法来导出成文件,也可以通过render_in_browser()方法在浏览器中查看
我们再来看多列柱状图的绘制,代码如下
view.add('奇数', [1,3,5,7,9,11])
view.add('偶数', [2,4,6,8,10,12])
output
要是我们想将柱状图横过来看,将上述代码当中的一小部分替换成
view = pygal.HorizontalBar()
output
而要是我们想要堆叠形式的柱状图,则需要将上述代码当中的一小部分替换成
view = pygal.HorizontalStackedBar()
output
对于折线图的绘制,其实与上面柱状图的绘制基本一致,我们直接来看代码
view = pygal.Line() #图表名 view.title = '折线图' #添加数据 view.add('奇数', [1,3,5,7,9,11])
view.add('偶数', [2,4,6,8,10,12]) #在浏览器中查看 view.render_in_browser()
output
也和上面柱状图的代码逻辑保持一致,折线图中也有堆叠式的折线图,只需要将上面的代码当中的一部分替换成
view = pygal.StackedLine(fill=True)
同样,饼图的绘制也是相似的代码逻辑
view = pygal.Pie() #图表名 view.title = '饼状图' #添加数据 view.add('A', 23)
view.add('B', 40)
view.add('C', 15)
view.render_to_file('pie.svg')
output
同时我们也可以绘制圆环图,在饼图的中心掏空出来一块,代码大致相同,只是需要将上面的一小部分替换成
#设置空心圆半径 view = pygal.Pie(inner_radius=0.4)
output
当我们每个类当中不止只有一个数字的时候,可以绘制多级饼图,代码如下
view = pygal.Pie() #图表名 view.title = '多级饼图' #添加数据 view.add('A', [20, 25, 30, 45]) view.add('B', [15, 19, 25, 50]) view.add('C', [18, 22, 28, 35]) view.render_to_file('pie_multi.svg')
output
雷达图可以帮我们从多个维度来分析数据,例如我们分析运动员的运动能力的时候,就会从多个维度来综合看待,这个时候雷达图就变得非常有用,代码如下
radar_chart = pygal.Radar()
radar_chart.title = 'NBA 各球员能力比拼' radar_chart.x_labels = ['得分', '防守', '助攻', '失误', '篮板']
radar_chart.add('库里', [70, 98, 96, 85, 97])
radar_chart.add('詹姆斯', [60, 95, 50, 75, 99])
radar_chart.add('杜兰特', [94, 45, 88, 91, 98])
radar_chart.render_to_file('radar_nba.svg')
output
当然上面的数据都是瞎编的,喜欢NBA的读者朋友或者是喜欢上面几个球形的读者朋友看了可别喷我哦
箱型图可以快速地帮我们了解数据的分布,查看是否存在极值。在pygal模块当中也提供了绘制箱型图的方法,代码如下
box_plot = pygal.Box() box_plot.title = '各浏览器的使用量' box_plot.add('Chrome', [6395, 8212, 7520, 7218, 12464, 1660, 2123, 8607]) box_plot.add('Firefox', [7512, 8099, 11700, 2651, 6361, 1044, 8502, 9450]) box_plot.add('360安全卫士', [3472, 2933, 4203, 5510, 5810, 1828, 9013, 4669]) box_plot.add('Edge', [4310, 4109, 5935, 7902, 14404, 13608, 34004, 10210]) box_plot.render_to_file("box.svg")
output
仪表盘可以帮助我们量化指标的好坏,代码如下
gauge_chart = pygal.Gauge(human_readable=True)
gauge_chart.title = '不同浏览器的性能差异' gauge_chart.range = [0, 10000]
gauge_chart.add('Chrome', 8212)
gauge_chart.add('Firefox', 8099)
gauge_chart.add('360安全卫士', 2933)
gauge_chart.add('Edge', 2530)
gauge_chart.render_to_file('gauge_1.svg')
output
热力图可以更加直观的观测每个区域当中数据的分布,代码如下
treemap = pygal.Treemap() treemap.title = 'Binary TreeMap' treemap.add('A', [12, 15, 12, 40, 2, 10, 10, 13, 12, 13, 40, None, 19]) treemap.add('B', [4, 2, 5, 10, 30, 4, 2, 7, 4, -10, None, 8, 30, 10]) treemap.add('C', [3, 8, 3, 3, 5, 15, 3, 5, 4, 12]) treemap.add('D', [23, 18]) treemap.add('E', [11, 2, 1, 12, 3, 13, 1, 2, 13, 14, 3, 1, 2, 10, 1, 10, 12, 1]) treemap.add('F', [31]) treemap.add('G', [15, 9.3, 8.1, 12, 4, 34, 2]) treemap.add('H', [12, 13, 3]) treemap.render_in_browser()
output
首先我们来看世界地图的绘制,在这之前,我们还要下载绘制整个世界地图所需要的插件
pip install pygal_maps_world
代码如下
worldmap_chart = pygal.maps.world.World()
worldmap_chart.title = 'Some countries' worldmap_chart.add('A countries', ['国家名称的缩写'])
worldmap_chart.add('B countries', ['国家名称的缩写'])
worldmap_chart.add('C countries', ['国家名称的缩写'])
worldmap_chart.render_in_browser()
output
我们也可以针对不同国家的计数来进行地图的绘制,例如不同国家重大疾病的死亡人数,代码如下
worldmap_chart = pygal.maps.world.World()
worldmap_chart.title = 'Minimum deaths by capital punishement (source: Amnesty International)' worldmap_chart.add('In 2012', { '国家名称的缩写': 数量, '国家名称的缩写': 数量,
.....
})
worldmap_chart.render_in_browser()
output
我们也可以绘制以五大洲为主的世界地图,代码如下
worldmap_continent = pygal.maps.world.SupranationalWorld()
worldmap_continent.add('Asia', [('asia', 1)])
worldmap_continent.add('Europe', [('europe', 1)])
worldmap_continent.add('Africa', [('africa', 1)])
worldmap_continent.add('North america', [('north_america', 1)])
worldmap_continent.add('South america', [('south_america', 1)])
worldmap_continent.add('Oceania', [('oceania', 1)])
worldmap_continent.add('Antartica', [('antartica', 1)])
worldmap_continent.render_in_browser()
output
当然我们也可以将某个国家作为绘制,例如我们以法国为例,首先我们需要下载绘制单独某个国家的地图所依赖的插件
pip install pygal_maps_fr
代码如下
fr_chart = pygal.maps.fr.Regions()
fr_chart.title = '法国区域图' fr_chart.add('区域名称', ['数量'])
fr_chart.render_in_browser()
output
但是提及绘制某个国家的地图而言,目前支持的国家的数量并不多,在官网上面也只罗列法国和瑞士这两个国家,其他国家的插件下载,小编尝试下载了一下,都下载不了,后面就等官方的更新与优化把
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25