作者:俊欣
来源:关于数据分析与可视化
今天和大家来分享一些数据可视化方向的干货,我们来尝试用Python来绘制一下“漏斗图”,但愿大家在看完本篇文章之后会有所收获。
漏斗图常用于用户行为的转化率分析,例如通过漏斗图来分析用户购买流程中各个环节的转化率。当然在整个分析过程当中,我们会把流程优化前后的漏斗图放在一起,进行比较分析,得出相关的结论,今天小编就用“matplotlib”、“plotly”以及“pyecharts”这几个模块来为大家演示一下怎么画出好看的漏斗图
首先我们先要导入需要用到的模块以及数据,
import matplotlib.pyplot as plt import pandas as pd
df = pd.DataFrame({"环节": ["环节一", "环节二", "环节三", "环节四", "环节五"], "人数": [1000, 600, 400, 250, 100], "总体转化率": [1.00, 0.60, 0.40, 0.25, 0.1]})
需要用到的数据如下图所示
用matplotlib来制作漏斗图,制作出来的效果可能会稍显简单与粗糙,制作的原理也比较简单,先绘制出水平方向的直方图,然后利用plot.barh()当中的“left”参数将直方图向左移,便能出来类似于漏斗图的模样
y = [5,4,3,2,1] x = [85,75,58,43,23] x_max = 100 x_min = 0 for idx, val in enumerate(x): plt.barh(y[idx], x[idx], left = idx+5) plt.xlim(x_min, x_max)
而要绘制出我们想要的想要的漏斗图的模样,代码示例如下
from matplotlib import font_manager as fm # funnel chart y = [5,4,3,2,1]
labels = df["环节"].tolist()
x = df["人数"].tolist()
x_range = 100
font = fm.FontProperties(fname="KAITI.ttf")
fig, ax = plt.subplots(1, figsize=(12,6)) for idx, val in enumerate(x):
left = (x_range - val)/2 plt.barh(y[idx], x[idx], left = left, color='#808B96', height=.8, edgecolor='black') # label plt.text(50, y[idx]+0.1, labels[idx], ha='center',
fontproperties=font, fontsize=16, color='#2A2A2A') # value plt.text(50, y[idx]-0.3, x[idx], ha='center',
fontproperties=font, fontsize=16, color='#2A2A2A') if idx != len(x)-1:
next_left = (x_range - x[idx+1])/2 shadow_x = [left, next_left, 100-next_left, 100-left, left]
shadow_y = [y[idx]-0.4, y[idx+1]+0.4,
y[idx+1]+0.4, y[idx]-0.4, y[idx]-0.4]
plt.plot(shadow_x, shadow_y)
plt.xlim(x_min, x_max)
plt.axis('off')
plt.title('每个环节的流失率', fontproperties=font, loc='center', fontsize=24, color='#2A2A2A')
plt.show()
绘制出来的漏斗图如下图所示
当然我们用plotly来绘制的话则会更加的简单一些,代码示例如下
import plotly.express as px data = dict(values=[80,73,58,42,23],
labels=['环节一', '环节二', '环节三', '环节四', '环节五'])
fig = px.funnel(data, y='labels', x='values')
fig.show()
最后我们用pyecharts模块来绘制一下,当中有专门用来绘制“漏斗图”的方法,我们只需要调用即可
from pyecharts.charts import Funnel
from pyecharts import options as opts
from pyecharts.globals import ThemeType c = ( Funnel(init_opts=opts.InitOpts(width="900px", height="600px",theme = ThemeType.INFOGRAPHIC ))
.add( "环节",
df[["环节","总体转化率"]].values,
sort_="descending",
label_opts=opts.LabelOpts(position="inside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts漏斗图", pos_bottom = "90%", pos_left = "center"))
) c.render_notebook()
我们将数据标注上去之后
c = (
Funnel(init_opts=opts.InitOpts(width="900px", height="600px",theme = ThemeType.INFOGRAPHIC ))
.add( "商品",
df[["环节","总体转化率"]].values,
sort_="descending",
label_opts=opts.LabelOpts(position="inside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts漏斗图", pos_bottom = "90%", pos_left = "center"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c}"))
)
c.render_notebook()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26