数据分析学习笔记:数据可视化
本篇来源于书籍《数据之美—一本书学会可视化设计》的学习后整理所得。全篇主要围绕数据可视化的5个步骤展开,其中重点内容是第三步:“应该使用哪种可视化形式”。本篇旨在带你全面认识了解可视化,所以一些具体的工具的使用并未涉及,只是罗列类一些常用的可视化工具。
你有什么数据
关于可视化,人们一般的理解是先设想要达到的可视化效果,然后在去寻找相应的数据。
这样经常会造成:“现有的数据不能够做出事先设想的可视化效果,或者是想要制作理想的图表需要获取更多的数据。”
而实际上关于可视化的步骤应该是先认清你有什么数据。
为了更好的进行可视化,我们将数据分为分类数据、时序数据、空间数据、多元变量数据四大类。
1、分类数据
分类数据是指针反映事物类别的数据。如:用户的设备可以分为Iphone用户和andorid用户两种;支付方式可以分为支付宝、微信、现金支付三种等。诸如此类的分类所得到的数据被称为分类数据。
2、时序数据
时序数据也称时间序列数据,是指同一统一指标按时间顺序记录的数据列。如:每个月的新增用户数量、某公司近十年每年的GMV等。诸如此类按时间顺序来记录的指标对应的数据成为时序数据。
3、空间数据
空间数据是指用来表示空间实体的位置、形状、大小及其分布特征诸多方面信息的数据,它可以用来描述来自现实世界的目标,它具有定位、定性、时间和空间关系等特性。空间数据是一种用点、线、面以及实体等基本空间数据结构来表示人们赖以生存的自然世界的数据。
4、多变量
数据通常以表哥形式的出现,表格中有多个列,每一列代表一个变量,将这份数据就称为多变量数据,多变量常用来研究变量之间的相关性。即用来找出影响某一指标的因素有哪些。
关于数据你想了解什么
关于数据你想了解什么也就是针对数据进行提问。
你想从中得到什么结论(平台上的用户中哪个地区的用户较多、数据分析领域最具有权威的人物是谁、2016年的GMV环比去年是增加类还是降低类)。
了解什么到什么现象(学生成绩好坏可能与家庭背景是否具有一定的相关性、应届生收入和毕业院校是否有一定的相关性)。
应该使用哪种可视化形式
在前面我们已经说过,在做可视化的过程中,我们需要先明确我们有什么数据,然后再去研究这些数据适合做什么类型的可视化,再然后从这些适合的可视化类型中选择能够很好的满足我们需求的(即能够更好的帮助我们了解我们想要的)视图。
为了找到合适的可视化形式我们需要先介绍两个内容:有哪些可视化形式、如何让可视化更加清晰。
1、有哪些可视化形式
基于数据的可视化形式有:视觉暗示、坐标系、标尺、背景信息以及前面四种形式的任意组合。
(1)视觉暗示:
是指通过查看图表就可以与潜意识中的意识进行联系从而得出图表表达的意识。常用的视觉暗示主要有:位置(位置高低)、长度(长短)、角度(大小)、方向(方向上升还是下降)、形状(不同形状代表不同分类)、面积(面积大小)、体积(体积大小)、饱和度(色调的强度,就是颜色的深浅)、色调(不同颜色)。
(2)坐标系:
这里的坐标系和我们之前数学中学到的坐标系是相同的,只不过坐标轴的意义可能稍有不同。常见的坐标系种类有:直角坐标系、极坐标系和地理坐标系。
大家对直角坐标系、极坐标系比较熟悉,这里说一下地理坐标系。
地理坐标系是使用三维球面来定义地球表面位置,以实现通过经纬度对地球表面点位引用的坐标系。但是我们在进行数据可视化的时候一般用投影的方法把其从三维数据转化成二维的平面图形。
(3)标尺:
前面说到的三种坐标系只是定义了展示数据的维度和方向,而标尺的作用是用来衡量不同方向和维度上的大小,其实和我们熟悉的刻度挺像。
(4)背景信息:
此处的背景和我们在语文中学习到的背景是一个概念,是为了说明数据的相关信息(who、what、when、where、why),使数据更加清晰,便于读者更好的理解。
(5)组合组件:
组合组件就是根据目标用途将上面四种信息进行组合。
2、如何让可视化更加清晰
如何让可视化更加清晰:
(1)建立视觉层次:
把图表在视觉上进行分层,把非重点信息弱化,重点信息强化突出。
(2)增强图标可读性:
● 让数据点更容易比较
● 留白,图表之间留有一定空间的空白。
(3)高亮显示重点内容:
高亮就是以特殊形式显示的内容,便于读者在一堆数据中很快抓住重点。
(4)注释可视化:
一般指图标的标题部分。帮助读者更好地理解图表的意思。
能够进行可视化的工具有哪些
1、Microsoft Excel
对于这个软件大家应该并不陌生,对于一般的可视化这个软件完全足矣,但是对于一些数据量较大的数据则不太适合。
2、Google Spreadsheets
Google Spreadsheets是基于Web的应用程序,它允许使用者创建、更新和修改表格并在线实时分享数据。基于Ajax的程序和微软的Excel和CSV(逗号分隔值)文件是兼容的。表格也可以以超文本链接标记语言(HTML)的格式保存。
3、Tableau Software
Tableau Software现在比较受大家的欢迎,既可以超越Excel做一些稍微复杂的数据分析,又不用像R、Python那种编程语言进行可视化那么复杂。好多人都有推荐这款软件。
4、一些需要编程性语言的工具
R语言、JavaScript、HTML、SVG、CSS、Processing、Python。这里主要是列举一下有哪些编程语言可以实现可视化,具体如何实现需要读者自行学习。我目前主要是在学python的可视化,稍后会分享一篇用python进行可视化的学习笔记。
透过可视化你看到了什么、有什么意义
把数据可视化以后,你需要从中发现一些数据之间的相关性以及通过数据暴露出来的问题。比如你会发现某天的新注册用户显著高于或低于其他天的数量,你发现这个问题了,你就需要去调查该问题出现的原因,然后解决他。
或者是你发现某两个指标具有很强的线性相关关系,那么你就需要去通过其他方面去验证这个情况是真实存在的还只是偶然情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31