数据分析学习笔记:数据可视化
本篇来源于书籍《数据之美—一本书学会可视化设计》的学习后整理所得。全篇主要围绕数据可视化的5个步骤展开,其中重点内容是第三步:“应该使用哪种可视化形式”。本篇旨在带你全面认识了解可视化,所以一些具体的工具的使用并未涉及,只是罗列类一些常用的可视化工具。
你有什么数据
关于可视化,人们一般的理解是先设想要达到的可视化效果,然后在去寻找相应的数据。
这样经常会造成:“现有的数据不能够做出事先设想的可视化效果,或者是想要制作理想的图表需要获取更多的数据。”
而实际上关于可视化的步骤应该是先认清你有什么数据。
为了更好的进行可视化,我们将数据分为分类数据、时序数据、空间数据、多元变量数据四大类。
1、分类数据
分类数据是指针反映事物类别的数据。如:用户的设备可以分为Iphone用户和andorid用户两种;支付方式可以分为支付宝、微信、现金支付三种等。诸如此类的分类所得到的数据被称为分类数据。
2、时序数据
时序数据也称时间序列数据,是指同一统一指标按时间顺序记录的数据列。如:每个月的新增用户数量、某公司近十年每年的GMV等。诸如此类按时间顺序来记录的指标对应的数据成为时序数据。
3、空间数据
空间数据是指用来表示空间实体的位置、形状、大小及其分布特征诸多方面信息的数据,它可以用来描述来自现实世界的目标,它具有定位、定性、时间和空间关系等特性。空间数据是一种用点、线、面以及实体等基本空间数据结构来表示人们赖以生存的自然世界的数据。
4、多变量
数据通常以表哥形式的出现,表格中有多个列,每一列代表一个变量,将这份数据就称为多变量数据,多变量常用来研究变量之间的相关性。即用来找出影响某一指标的因素有哪些。
关于数据你想了解什么
关于数据你想了解什么也就是针对数据进行提问。
你想从中得到什么结论(平台上的用户中哪个地区的用户较多、数据分析领域最具有权威的人物是谁、2016年的GMV环比去年是增加类还是降低类)。
了解什么到什么现象(学生成绩好坏可能与家庭背景是否具有一定的相关性、应届生收入和毕业院校是否有一定的相关性)。
应该使用哪种可视化形式
在前面我们已经说过,在做可视化的过程中,我们需要先明确我们有什么数据,然后再去研究这些数据适合做什么类型的可视化,再然后从这些适合的可视化类型中选择能够很好的满足我们需求的(即能够更好的帮助我们了解我们想要的)视图。
为了找到合适的可视化形式我们需要先介绍两个内容:有哪些可视化形式、如何让可视化更加清晰。
1、有哪些可视化形式
基于数据的可视化形式有:视觉暗示、坐标系、标尺、背景信息以及前面四种形式的任意组合。
(1)视觉暗示:
是指通过查看图表就可以与潜意识中的意识进行联系从而得出图表表达的意识。常用的视觉暗示主要有:位置(位置高低)、长度(长短)、角度(大小)、方向(方向上升还是下降)、形状(不同形状代表不同分类)、面积(面积大小)、体积(体积大小)、饱和度(色调的强度,就是颜色的深浅)、色调(不同颜色)。
(2)坐标系:
这里的坐标系和我们之前数学中学到的坐标系是相同的,只不过坐标轴的意义可能稍有不同。常见的坐标系种类有:直角坐标系、极坐标系和地理坐标系。
大家对直角坐标系、极坐标系比较熟悉,这里说一下地理坐标系。
地理坐标系是使用三维球面来定义地球表面位置,以实现通过经纬度对地球表面点位引用的坐标系。但是我们在进行数据可视化的时候一般用投影的方法把其从三维数据转化成二维的平面图形。
(3)标尺:
前面说到的三种坐标系只是定义了展示数据的维度和方向,而标尺的作用是用来衡量不同方向和维度上的大小,其实和我们熟悉的刻度挺像。
(4)背景信息:
此处的背景和我们在语文中学习到的背景是一个概念,是为了说明数据的相关信息(who、what、when、where、why),使数据更加清晰,便于读者更好的理解。
(5)组合组件:
组合组件就是根据目标用途将上面四种信息进行组合。
2、如何让可视化更加清晰
如何让可视化更加清晰:
(1)建立视觉层次:
把图表在视觉上进行分层,把非重点信息弱化,重点信息强化突出。
(2)增强图标可读性:
● 让数据点更容易比较
● 留白,图表之间留有一定空间的空白。
(3)高亮显示重点内容:
高亮就是以特殊形式显示的内容,便于读者在一堆数据中很快抓住重点。
(4)注释可视化:
一般指图标的标题部分。帮助读者更好地理解图表的意思。
能够进行可视化的工具有哪些
1、Microsoft Excel
对于这个软件大家应该并不陌生,对于一般的可视化这个软件完全足矣,但是对于一些数据量较大的数据则不太适合。
2、Google Spreadsheets
Google Spreadsheets是基于Web的应用程序,它允许使用者创建、更新和修改表格并在线实时分享数据。基于Ajax的程序和微软的Excel和CSV(逗号分隔值)文件是兼容的。表格也可以以超文本链接标记语言(HTML)的格式保存。
3、Tableau Software
Tableau Software现在比较受大家的欢迎,既可以超越Excel做一些稍微复杂的数据分析,又不用像R、Python那种编程语言进行可视化那么复杂。好多人都有推荐这款软件。
4、一些需要编程性语言的工具
R语言、JavaScript、HTML、SVG、CSS、Processing、Python。这里主要是列举一下有哪些编程语言可以实现可视化,具体如何实现需要读者自行学习。我目前主要是在学python的可视化,稍后会分享一篇用python进行可视化的学习笔记。
透过可视化你看到了什么、有什么意义
把数据可视化以后,你需要从中发现一些数据之间的相关性以及通过数据暴露出来的问题。比如你会发现某天的新注册用户显著高于或低于其他天的数量,你发现这个问题了,你就需要去调查该问题出现的原因,然后解决他。
或者是你发现某两个指标具有很强的线性相关关系,那么你就需要去通过其他方面去验证这个情况是真实存在的还只是偶然情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29