作者:俊欣
来源:关于数据分析与可视化
大家好,又是新的一周,也是2021年的最后一周,今天小编来和大家说一说怎么从DataFrame数据集中筛选符合指定条件的数据,希望会对读者朋友有所帮助。
我们先导入pandas模块,并且读取数据,代码如下
import pandas as pd
df = pd.read_csv("netflix_titles.csv")
df.head()
首先我们可以根据文本内容直接来筛选,返回的是True如果文本内容是相匹配的,False如果文本内容是不匹配的,代码如下
mask = df['type'].isin(['TV Show'])
mask.head()
output
0 False 1 True 2 True 3 True 4 True Name: type, dtype: bool
然后我们将这个mask作用到整个数据集当中,返回的则是满足与True条件的数据
df[mask].head()
output
当然我们也可以和.loc方法来相结合,只挑选少数的几个指定的列名,代码如下
df.loc[mask, ['title','country','duration']].head()
output
title country duration 1 Blood & Water South Africa 2 Seasons 2 Ganglands NaN 1 Season 3 Jailbirds New Orleans NaN 1 Season 4 Kota Factory India 2 Seasons 5 Midnight Mass NaN 1 Season
当然要是我们所要筛选的文本内容并不仅仅只有1个,就可以这么来操作,代码如下
mask = df['type'].isin(['Movie','TV Show'])
结果返回的是True,要是文本内容全部都匹配,要是出现一个不匹配的现象则返回的是False
我们可以根据某个关键字来筛选数据,数据集当中的listed-in包含的是每部电影的种类,当然很多电影并不只有一个种类,而是同时涉及到很多个种类,例如某一部电影既有“科幻”元素,也有“爱情”元素同时还包含了部分“动作片”的元素。
我们按照某个关键字来筛选,例如筛选出包含了“horror”这个关键字的影片,代码如下
mask = df['listed_in'].str.contains('horror', case=False, na=False)
其中的case=False表明的是忽略字母的大小写问题,na=False表明的是对于缺失值返回的是False,
df[mask].head()
output
而要是文本数据当中包含了一些特殊符号,例如+、^以及=等符号时,我们可以将regex参数设置成False(默认的是True),这样就不会被当做是正则表达式的符号,代码如下
df['a'].str.contains('^', regex=False)
#或者是 df['a'].str.contains('^')
当关键字不仅仅只有一个的时候,就可以这么来操作
pattern = 'horror|stand-up' mask = df['listed_in'].str.contains(pattern, case=False, na=False)
df[mask].sample(5)
output
我们用了|来表示“或”的意思,将电影类别包含“horror”或者是“stand-up”这两类的电影筛选出来
除此之外,我们还可以这么来做
mask1 = df['listed_in'].str.contains("horror", case=False)
mask2 = df['listed_in'].str.contains("stand-up", case=False)
df[mask1 | mask2].sample(5)
出来的结果和上述一样,只不过过程可能稍加繁琐,除了|表示的是“或”之外,也有表示的是和,也就是&标识符,意味着条件全部都需要满足即可,例如
mask1 = (df['listed_in'].str.contains('horror', case=False, na=False))
mask2 = (df['type'].isin(['TV Show']))
df[mask1 & mask2].head(3)
output
我们可以添加多个条件在其中,多个条件同时满足,例如
mask1 = df['rating'].str.contains('tv', case=False, na=False)
mask2 = df['listed_in'].str.contains('tv', case=False, na=False)
mask3 = df['type'].str.contains('tv', case=False, na=False)
df[mask1 & mask2 & mask3].head()
output
我们同时也可以将正则表达式应用在如下的数据筛选当中,例如str.contains('str1.*str2')代表的是文本数据是否以上面的顺序呈现,
pattern = 'states.*mexico' mask = data['country'].str.contains(pattern, case=False, na=False)
data[mask].head()
output
其中.*在正则表达式当中表示匹配除换行符之外的所有字符,我们需要筛选出来包含states以及mexico结尾的文本数据,我们再来看下面的例子
pattern = 'states.*mexico|mexico.*states' mask = data['country'].str.contains(pattern, case=False, na=False)
data[mask].head()
output
我们筛选出来的文本数据满足两个条件当中的一个即可
有一些筛选数据的方式可能稍显复杂,因此需要lambda方法的介入,例如
cols_to_check = ['rating','listed_in','type']
pattern = 'tv' mask = data[cols_to_check].apply(
lambda col:col.str.contains(
pattern, na=False, case=False)).all(axis=1)
我们需要在rating、listed_in以及type这三列当中筛选出包含tv的数据,我们来看一下结果如何
df[mask].head()
output
我们再来看下面的这个例子,
mask = df.apply(
lambda x: str(x['director']) in str(x['cast']),
axis=1)
上面的例子当中是来查看director这一列是否被包含在了cast这一列当中,结果如下
df[mask].head()
output
我们还可以通过filter方法来筛选文本的数据,例如筛选出列名包含in的数据,代码如下
df.filter(like='in', axis=1).head(5)
output
当然我们也可以用.loc方法来实现,代码如下
df.loc[:, df.columns.str.contains('in')]
出来的结果和上述的一样
要是我们将axis改成0,就意味着是针对行方向的,例如筛选出行索引中包含Love的影片,代码如下
df_1 = df.set_index('title')
df_1.filter(like='Love', axis=0).head(5)
output
当然我们也可以通过.loc方法来实现,代码如下
df_1.loc[df_1.index.str.contains('Love'), :].head()
我们可以使用query方法,例如我们筛选出国家是韩国的影片
df.query('country == "South Korea"').head(5)
output
例如筛选出影片的添加时间是11月的,代码如下
mask = df["date_added"].str.startswith("Nov")
df[mask].head()
output
那既然用到了startswith方法,那么就会有endswith方法,例如
df['col_name'].str.endswith('2019')
除此之外还有这些方法可以用来筛选文本数据
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16