
作者:俊欣
来源:关于数据分析与可视化
大家好,我是俊欣,本篇文章应该算得上是2022年的第一篇原创了,抱歉,元旦期间小编有点偷懒。
今天小编来给大家讲一下Pandas模块当中的数据统计与排序,说到具体的就是value_counts()方法以及sort_values()方法。
value_counts()方法,顾名思义,主要是用于计算各个类别出现的次数的,而sort_values()方法则是对数值来进行排序,当然除了这些,还有很多大家不知道的衍生的功能等待被挖掘,下面小编就带大家一个一个的说过去。
我们这次用到的数据集是“非常有名”的泰坦尼克号的数据集,该数据源能够在很多平台上都能够找得到
import pandas as pd
df = pd.read_csv("titanic_train.csv")
df.head()
output
首先我们来看一下常规的用法,代码如下
df['Embarked'].value_counts()
output
S 644 C 168 Q 77 Name: Embarked, dtype: int64
下面我们简单来介绍一下value_counts()方法当中的参数,
DataFrame.value_counts(subset=None,
normalize=False,
sort=True,
ascending=False,
dropna=True)
常用到参数的具体解释为:
上面返回的结果是按照从大到小来进行排序的,当然我们也可以反过来,从小到大来进行排序,代码如下
df['Embarked'].value_counts(ascending=True)
output
Q 77 C 168 S 644 Name: Embarked, dtype: int64
同时我们也可以对索引,按照字母表的顺序来进行排序,代码如下
df['Embarked'].value_counts(ascending=True).sort_index(ascending=True)
output
C 168 Q 77 S 644 Name: Embarked, dtype: int64
当中的ascending=True指的是升序排序
默认的是value_counts()方法不会对空值进行统计,那要是我们也希望对空值进行统计的话,就可以加上dropna参数,代码如下
df['Embarked'].value_counts(dropna=False)
output
S 644 C 168 Q 77 NaN 2 Name: Embarked, dtype: int64
我们可以将数值的统计转化成百分比式的统计,可以更加直观地看到每一个类别的占比,代码如下
df['Embarked'].value_counts(normalize=True)
output
S 0.724409 C 0.188976 Q 0.086614 Name: Embarked, dtype: float64
要是我们希望对能够在后面加上一个百分比的符号,则需要在Pandas中加以设置,对数据的展示加以设置,代码如下
pd.set_option('display.float_format', '{:.2%}'.format) df['Embarked'].value_counts(normalize = True)
output
S 72.44% C 18.90% Q 8.66% Name: Embarked, dtype: float64
当然除此之外,我们还可以这么来做,代码如下
df['Embarked'].value_counts(normalize = True).to_frame().style.format('{:.2%}')
output
Embarked S 72.44% C 18.90% Q 8.66%
和Pandas模块当中的cut()方法相类似的在于,我们这里也可以将连续型数据进行分箱然后再来统计,代码如下
df['Fare'].value_counts(bins=3)
output
(-0.513, 170.776] 871 (170.776, 341.553] 17 (341.553, 512.329] 3 Name: Fare, dtype: int64
我们将Fare这一列同等份的分成3组然后再来进行统计,当然我们也可以自定义每一个分组的上限与下限,代码如下
df['Fare'].value_counts(bins=[-1, 20, 100, 550])
output
(-1.001, 20.0] 515 (20.0, 100.0] 323 (100.0, 550.0] 53 Name: Fare, dtype: int64
pandas模块当中的groupby()方法允许对数据集进行分组,它也可以和value_counts()方法联用更好地来进行统计分析,代码如下
df.groupby('Embarked')['Sex'].value_counts()
output
Embarked Sex C male 95 female 73 Q male 41 female 36 S male 441 female 203 Name: Sex, dtype: int64
上面的代码是针对“Embarked”这一类别下的“Sex”特征进行分组,然后再进一步进行数据的统计分析,当然出来的结果是Series数据结构,要是我们想让Series的数据结果编程DataFrame数据结构,可以这么来做,
df.groupby('Embarked')['Sex'].value_counts().to_frame()
下面我们来谈一下数据的排序,主要用到的是sort_values()方法,例如我们根据“年龄”这一列来进行排序,排序的方式为降序排,代码如下
df.sort_values("Age", ascending = False).head(10)
output
我们看到排序过之后的DataFrame数据集行索引依然没有变,我们希望行索引依然可以是从0开始依次的递增,就可以这么来做,代码如下
df.sort_values("Age", ascending = False, ignore_index = True).head(10)
output
下面我们简单来介绍一下sort_values()方法当中的参数
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', # last,first;默认是last ignore_index=False, key=None)
常用到参数的具体解释为:
我们还可以对多个字段进行排序,代码如下
df.sort_values(["Age", "Fare"], ascending = False).head(10)
output
同时我们也可以对不同的字段指定不同的排序方式,如下
df.sort_values(["Age", "Fare"], ascending = [False, True]).head(10)
output
我们可以看到在“Age”一样的情况下,“Fare”字段是按照升序的顺序来排的
我们可以自定义一个函数方法,然后运用在sort_values()方法当中,让其按照自己写的方法来排序,我们看如下的这组数据
df = pd.DataFrame({ 'product': ['keyboard', 'mouse', 'desk', 'monitor', 'chair'], 'category': ['C', 'C', 'O', 'C', 'O'], 'year': [2002, 2002, 2005, 2001, 2003], 'cost': ['$52', '$24', '$250', '$500', '$150'], 'promotion_time': ['20hr', '30hr', '20hr', '20hr', '2hr'],
})
output
当中的“cost”这一列带有美元符号“$”,因此就会干扰排序的正常进行,我们使用lambda方法自定义一个函数方法运用在sort_value()当中
df.sort_values( 'cost',
key=lambda val: val.str.replace('$', '').astype('float64')
)
output
当然我们还可以自定义一个更加复杂一点的函数,并且运用在sort_values()方法当中,代码如下
def sort_by_cost_time(x): if x.name == 'cost': return x.str.replace('$', '').astype('float64') elif x.name == 'promotion_time': return x.str.replace('hr', '').astype('int') else: return x
df.sort_values(
['year', 'promotion_time', 'cost'],
key=sort_by_cost_time
)
output
还有另外一种情况,例如我们遇到衣服的尺码,XS码、S码、M码、L码又或者是月份,Jan、Feb、Mar、Apr等等,需要我们自己去定义大小,这个时候我们需要用到的是CategoricalDtype
cat_size_order = CategoricalDtype(
['XS', 'S', 'M', 'L', 'XL'],
ordered=True
)
cat_size_order
output
CategoricalDtype(categories=['XS', 'S', 'M', 'L', 'XL'], ordered=True)
于是针对下面的数据
df = pd.DataFrame({ 'cloth_id': [1001, 1002, 1003, 1004, 1005, 1006], 'size': ['S', 'XL', 'M', 'XS', 'L', 'S'],
})
output
我们将事先定义好的顺序应用到该数据集当中,代码如下
df['size'] = df['size'].astype(cat_size_order)
df.sort_values('size')
output
先通过astype()来转换数据类型,然后再进行排序
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09