作者:豆豆
来源:Python 技术
众所周知,Python 以简洁著称,这个从我们写的第一行 Python 代码中就能看出来。今天派森酱就给大家整理了一些经典的一行代码操作,可能有些你还不知道,但对你未来的工作(装逼)肯定有大用处。
平时的编码过程中,进制转换是非常常用的一个功能,尤其是涉及到一些算法的时候更是频繁。事实上 Python 已经内置了各个进制转换的 Api,咱们直接调用即可。
In [1]: int('1100', 2) Out[1]: 12 In [2]: int('30', 8) Out[2]: 24 In [3]: int('ac9', 16) Out[3]: 2761
斐波纳契数列是一个很经典的数列,其通项公式为第一项和第二项都为 1,从第三项开始,每一项都等于前两项之和。
In [4]: fibonacci = lambda x: x if x <= 1 else fibonacci(x - 1) + fibonacci(x - 2) In [5]: fibonacci(15) Out[5]: 610
快速排序是初级工程师常考的一个算法题,整个算法写下来的话基本都需要八九行,来看看 Python 是如何一行代码搞定快速排序的。
In [6]: quick_sort = lambda l: l if len(l) <= 1 else quick_sort([x for x in l[1:] if x < l[0]]) + [l[0]] + quick_sort([x for x in l[1:] if x >= l[0]]) In [7]: quick_sort([18, 20, 12, 99, 200, 59, 66, 34, 22]) Out[7]: [12, 18, 20, 22, 34, 59, 66, 99, 200]
文件操作也是我们常用的操作之一,但你见过用 print 函数来写入文件的么。
print("Hello, Python!", file=open('file.txt', 'w'))
顾名思义,字母异位词就是通过交换单词中字母的顺序,两个单词最终是一样的。
In [9]: from collections import Counter
In [10]: s1, s2 = 'apple', 'orange' In [11]: 'anagram' if Counter(s1) == Counter(s2) else 'not an anagram' Out[11]: 'not an anagram'
对于数据分析工作者,经常会接触到矩阵,那么就需要熟悉对矩阵的各种操作。而矩阵转换就是常规操作之一。
In [12]: num_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] In [13]: result = list(list(x) for x in zip(*num_list)) In [14]: result Out[14]: [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
虽然现在很多常用的算法都被封装成 Api 直接调用就好了,但并不意味着我们的工作就不需要写算法了。在写算法的过程中会用到一些常见的字典数,比如大写字母、小写字母、数字等。而这些 Python 都考虑到了,直接调用即可。
In [15]: import string In [16]: string.ascii_lowercase
Out[16]: 'abcdefghijklmnopqrstuvwxyz' In [17]: string.ascii_uppercase
Out[17]: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' In [18]: string.digits
Out[18]: '0123456789'
在对接外部接口或者数据处理时,嵌套列表是非常常见的数据结构,但显然整合成一个列表更容易处理。
In [19]: num_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] In [20]: result = [item for sublist in num_list for item in sublist] In [21]: result Out[21]: [1, 2, 3, 4, 5, 6, 7, 8, 9]
推导式是 Python 的精华所在,极大的方便了我们创建列表和字典。
In [22]: num_list = [num for num in range(0, 10)] In [23]: num_list Out[23]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] In [24]: num_set = {num for num in range(0, 10)} In [25]: num_set Out[25]: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} In [26]: num_dict = {x: x * x for x in range(1, 5)} In [27]: num_dict Out[27]: {1: 1, 2: 4, 3: 9, 4: 16}
今天派森酱带大家一起梳理了一些看起来比较有用(装逼)的一行代码操作,方便小伙伴们在以后的工作中提高工作效率,更愉快的摸鱼。
关于 Python 的简洁操作,你还有什么独家秘笈想和大家分享呢,可以在评论区多多交流哦~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06