作者:俊欣
来源:关于数据分析与可视化
一般在Python当中,我们用于绘制图表的模块最基础的可能就是matplotlib了,今天小编分享几个用该模块进行可视化制作的技巧,帮助你绘制出更加高质量的图表。
同时本篇文章的第二部分是用Python来制作可视化动图,让你更加清楚的了解到数据的走势
最开始,我们先导入数据集,并且导入我们需要用到的库
import pandas as pd import matplotlib.pyplot as plt
plt.style.use("seaborn-darkgrid") # 读取数据 aapl = pd.read_csv("AAPL.csv") print(aapl.head())
output
Date Open High ... Close Adj Close Volume 0 2021-9-30 143.660004 144.380005 ... 141.500000 141.293793 88934200 1 2021-10-1 141.899994 142.919998 ... 142.649994 142.442108 94639600 2 2021-10-4 141.759995 142.210007 ... 139.139999 138.937225 98322000 3 2021-10-5 139.490005 142.240005 ... 141.110001 140.904358 80861100 4 2021-10-6 139.470001 142.149994 ... 142.000000 141.793060 83221100
上面的代码我们用到的是“苹果”公司2021年的9月31日到12月31日的股价走势,我们先来简单的画一张折线图,代码如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
output
上面的折线图看着就有点单调和简单,我们就单单只可以看到数据的走势,除此之外就没有别的收获,我们甚至都不知道这条折线所表示的意义,因为接下来我们来进行一系列的优化
第一步我们先给图表添加标题以及给X轴、Y轴设置标签,代码如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
# 添加标题和给Y轴打上标记 plt.ylabel("Closing Price", fontsize=15) ## 收盘价 plt.title("Apple Stock Price", fontsize=18) ## 标题:苹果公司股价
output
现有的这个Y轴代表的是收盘价,要是我们还想再往图表当中添加另外一列的数据,该数据的数值范围和已有的收盘价的数值范围不同,如果放在一起,绘制出来的图表可不好看,如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
# 第二根折线图 plt.plot(aapl["Volume"])
# Y轴的名称和标记 plt.ylabel("Closing Price", fontsize=15) plt.title("Apple Stock Price", fontsize=18)
output
可以看到我们代表股价的那条蓝线变成了水平的直线,由于它的数值范围和“Volume”这一列当中的数据,数值范围差了不少,因此我还需要一个Y轴,来代表“Volume”这一列数据的走势,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴的标记 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 添加标题和Y轴的名称,有两个Y轴 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18)
output
上面的代码我们通过twinx()方法再来新建一个Y轴对象,然后对应的数据是Volume这一列当中的数据,而给Y轴标记的方式也从上面的plt.ylabel()变成了ax.set_ylabel()
接下来给绘制好的图表添加图例,不同的折线代表的是不同的数据,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12)
output
在plt.legend()方法当中的loc参数代表的是图例的位置,2代表的是左上方,具体的大家可以通过下面的链接来查阅
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
有时候我们感觉图表当中的网格线有点碍眼,就可以将其去掉,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False)
output
这样出来的图表是不是看着顺眼多了呢?!
有时候我们也想在图表当中添加一些文字,可以是注释也可以是一些赞美性的语言,可以通过代码来实现,如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False)
date_string = datetime.strptime("2021-10-31", "%Y-%m-%d") # 添加文字 ax1.text(
date_string, ## 代表的是添加的文字的位置 170, "Nice plot!", ## 添加的文字的内容 fontsize=18, ## 文字的大小 color="green" ## 颜色 )
output
在上面的图表当中,无论是标题还是注释或者是图例,都是英文的,我们需要往里面添加中文的内容时候,还需要添加下面的代码
plt.rcParams['font.sans-serif'] = ['SimHei']
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("收盘价", fontsize=15)
ax2.set_ylabel("成交量", fontsize=15)
plt.title("苹果公司股价走势", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False) # 添加文字 ax1.text(
date_string, 170, "画的漂亮",
fontsize=18,
color="green" )
output
这样全局的字体都被设置成了“黑体”,文本内容都是用中文来显示
我们还可以给X轴/Y轴添加边框,以及边框的粗细也可以通过代码来进行调整,如下
plt.rcParams["axes.edgecolor"] = "black" plt.rcParams["axes.linewidth"] = 2
同时我们还可以对X轴以及Y轴上面的刻度,它们的字体大小进行设置,代码如下
# tick size ax1.tick_params(axis='both', which='major', labelsize=13)
ax2.tick_params(axis='both', which='major', labelsize=13)
output
出来的图表是不是比一开始的要好很多呢?
接下来给大家介绍一个制作动图的Python库,bar_chart_race,只需要简单的几行代码,就可以制作出随着时间变化的直方图动图,代码如下
import bar_chart_race as bcr import pandas as pd # 生成GIF图像 df = pd.read_csv('covid19_tutorial.csv', index_col=index_col,
parse_dates=parse_dates)
bcr.bar_chart_race(df, 'covid19_tutorial_horiz.gif')
output
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10