CDA数据分析师 出品
作者:Natassha Selvaraj
编译:Mika
导读:由于新冠疫情,一年多前我失业了。在失业后,我自学了数据分析,如今我的收入翻了三倍。
大约18个月前,正值新冠疫情爆发最严重的时期,我失去了工作。之前,我在大学期间做兼职家教。我获得的课时费被用来支付伙食费、汽车加油等费用。
随着疫情防护政策的升级,要求停课停学,居家隔离,我也不能再去学校了,被迫在家自习。
一开始这看起来很糟,但我意识到这能让我有更多的时间。我开始尝试在这段时间里提升自己的技能。
在做了一些研究后,我发现一个很有意思的机器学习在线课程。这是我学完的第一个在线课程。在那之后,我把大部分时间都用于开发项目、学习代码和获得在线认证上。
如今,一年半过去了,凭借我在数据科学和分析领域的知识,我已经有了多个收入来源。下面跟大家简单分享一下。
首先,我入职了一家公司的数据分析岗位,在实习一段时间后,现在已经成功转正了。
起初,我本以为我的工作主要是模型构建。在入职后我发现,模型构建大约只占我工作内容的10%。其余的时间,我和我的团队都在研究如何创建的新解决方案,以解决业务问题。
通常,这些问题甚至不需要用到机器学习来解决。数据解决方案大多可以通过SQL查询完成。
我每天的工作主要包括回答以下问题:
这是对我日常工作的简单概括。但我想强调的是,创建数据解决方案并不以建立模型为起点和终点。
如果你是一位有抱负的数据分析师,我建议你在想从事的行业中获得一些专业领域知识。
我会把自己在数据领域获得的经验写下来。如果我在工作中构建一个项目,我会在Kaggle上找类似的数据集并复制分析,而且围绕它写一个教程。
最开始这只是我的个人爱好,也能提升自己的作品集。但同时,这类文章也让我认识了许多志同道合的数据分析师。这也是我展示自己编写和构建ML模型能力的一种方式。
起初,我从未想过通过自己的写作会得到报酬。然而,在过去的一年里,这项爱好开始为我创造收入。现在,我可以通过创建与数据相关的教程、项目和写自己的经历来获得被动收入。
当我在数据分析社区活跃起来后,我开始收到多个项目的邀约,也接了一些数据分析的私活。我为客户建立了机器学习模型,创建竞争对手分析报告,并撰写数据科学文章。
当我最初想到自由职业时,我以为必须在某个在线平台上竞标项目。然而,我所有的客户都是在阅读了我的文章或看了我的数据分析项目后主动与我联系的。
几个月前,我构建了一个聚类算法,并在网上发布了关于它的教程。第二天,就有人主动联系我,问我是否有兴趣为他们的客户构建聚类模型。
接手这些项目让我掌握了很多我在日常工作领域以外的技能。
在我的公司,我处理的数据通常以某种预处理的格式提供,我用SQL和Python对数据进行查询和处理。
而接私活时,客户的数据的格式非常不同。大部分数据都没有经过处理或结构化,我要花很多时间来弄清数据集之间的关系并进行理解。
我还需要收集外部数据来进行分析,这通常包括爬取第三方网站和使用开源工具。这些工程中让我接触到了目前日常工作外的知识,而且我能够在从事的每一个项目中学到新的东西。
我是如何做到的
之前提到,我参加了一个数据科学在线课程。其实在刚上完课程后,我感到很失落和茫然。之后我又花了大约一个月的时间用Scikit Learn学习不同的算法和训练模型。
当时我也不知道今后该怎么发展。
之后我看到一些文章,当中分享了别人是如何在没有相关学位或任何专业资格的情况下成功地获得了数据分析工作。我意识到领域知识和借助现有数据解决问题的重要性。
对我来说,建立最精确的模型或理解模型背后的基本算法并不是必须的。
我意识到,最重要的技能是利用数据解决问题的能力,而不是局限于机器学习的算法。
之后我又我参加了商业分析和ML工程的课程。这次我花在学习代码上的时间比花在理论上的时间多,我还花时间学习了SQL和数据处理。
随后,我通过网络爬取,从在线网站收集数据。我用这些数据解决问题,并用它构建了简单的机器学习web应用。
通过这种方式,我慢慢获得了成为端到端数据科学家所需的技能。
在公司的数据分析团队中,如果有任何超出我们日常工作范围的项目,比如需要收集外部数据或新算法的项目,我通常会被分配到该项目中。
如果你对数据分析行业感兴趣,或者已经在从事数据分析工作,现在网上有很多资源可供使用。事实上,这些资源太多了,有时你会不知道该如何选择。
虽然知道构建和训练模型的基本原理是很重要的,但大多数现有工作都要求你超越这一点。真正的需求在于,你能够借助现有数据去解决实际问题。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10