CDA数据分析师 出品
作者:Natassha Selvaraj
编译:Mika
导读:由于新冠疫情,一年多前我失业了。在失业后,我自学了数据分析,如今我的收入翻了三倍。
大约18个月前,正值新冠疫情爆发最严重的时期,我失去了工作。之前,我在大学期间做兼职家教。我获得的课时费被用来支付伙食费、汽车加油等费用。
随着疫情防护政策的升级,要求停课停学,居家隔离,我也不能再去学校了,被迫在家自习。
一开始这看起来很糟,但我意识到这能让我有更多的时间。我开始尝试在这段时间里提升自己的技能。
在做了一些研究后,我发现一个很有意思的机器学习在线课程。这是我学完的第一个在线课程。在那之后,我把大部分时间都用于开发项目、学习代码和获得在线认证上。
如今,一年半过去了,凭借我在数据科学和分析领域的知识,我已经有了多个收入来源。下面跟大家简单分享一下。
首先,我入职了一家公司的数据分析岗位,在实习一段时间后,现在已经成功转正了。
起初,我本以为我的工作主要是模型构建。在入职后我发现,模型构建大约只占我工作内容的10%。其余的时间,我和我的团队都在研究如何创建的新解决方案,以解决业务问题。
通常,这些问题甚至不需要用到机器学习来解决。数据解决方案大多可以通过SQL查询完成。
我每天的工作主要包括回答以下问题:
这是对我日常工作的简单概括。但我想强调的是,创建数据解决方案并不以建立模型为起点和终点。
如果你是一位有抱负的数据分析师,我建议你在想从事的行业中获得一些专业领域知识。
我会把自己在数据领域获得的经验写下来。如果我在工作中构建一个项目,我会在Kaggle上找类似的数据集并复制分析,而且围绕它写一个教程。
最开始这只是我的个人爱好,也能提升自己的作品集。但同时,这类文章也让我认识了许多志同道合的数据分析师。这也是我展示自己编写和构建ML模型能力的一种方式。
起初,我从未想过通过自己的写作会得到报酬。然而,在过去的一年里,这项爱好开始为我创造收入。现在,我可以通过创建与数据相关的教程、项目和写自己的经历来获得被动收入。
当我在数据分析社区活跃起来后,我开始收到多个项目的邀约,也接了一些数据分析的私活。我为客户建立了机器学习模型,创建竞争对手分析报告,并撰写数据科学文章。
当我最初想到自由职业时,我以为必须在某个在线平台上竞标项目。然而,我所有的客户都是在阅读了我的文章或看了我的数据分析项目后主动与我联系的。
几个月前,我构建了一个聚类算法,并在网上发布了关于它的教程。第二天,就有人主动联系我,问我是否有兴趣为他们的客户构建聚类模型。
接手这些项目让我掌握了很多我在日常工作领域以外的技能。
在我的公司,我处理的数据通常以某种预处理的格式提供,我用SQL和Python对数据进行查询和处理。
而接私活时,客户的数据的格式非常不同。大部分数据都没有经过处理或结构化,我要花很多时间来弄清数据集之间的关系并进行理解。
我还需要收集外部数据来进行分析,这通常包括爬取第三方网站和使用开源工具。这些工程中让我接触到了目前日常工作外的知识,而且我能够在从事的每一个项目中学到新的东西。
我是如何做到的
之前提到,我参加了一个数据科学在线课程。其实在刚上完课程后,我感到很失落和茫然。之后我又花了大约一个月的时间用Scikit Learn学习不同的算法和训练模型。
当时我也不知道今后该怎么发展。
之后我看到一些文章,当中分享了别人是如何在没有相关学位或任何专业资格的情况下成功地获得了数据分析工作。我意识到领域知识和借助现有数据解决问题的重要性。
对我来说,建立最精确的模型或理解模型背后的基本算法并不是必须的。
我意识到,最重要的技能是利用数据解决问题的能力,而不是局限于机器学习的算法。
之后我又我参加了商业分析和ML工程的课程。这次我花在学习代码上的时间比花在理论上的时间多,我还花时间学习了SQL和数据处理。
随后,我通过网络爬取,从在线网站收集数据。我用这些数据解决问题,并用它构建了简单的机器学习web应用。
通过这种方式,我慢慢获得了成为端到端数据科学家所需的技能。
在公司的数据分析团队中,如果有任何超出我们日常工作范围的项目,比如需要收集外部数据或新算法的项目,我通常会被分配到该项目中。
如果你对数据分析行业感兴趣,或者已经在从事数据分析工作,现在网上有很多资源可供使用。事实上,这些资源太多了,有时你会不知道该如何选择。
虽然知道构建和训练模型的基本原理是很重要的,但大多数现有工作都要求你超越这一点。真正的需求在于,你能够借助现有数据去解决实际问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30