作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个学生娃子找我帮忙做点可视化的作业,其实倒是也不难,觉得挺有意思,这里拿出来给大家分享,主要是完成了轮播图的制作,显得作业高大上一些。
首先是数据来源,来自百度疫情实时大数据报告,如下图所示。
新增感染病例
这里直接上代码和效果图,如下所示:
from pyecharts.charts import Map, Timeline from pyecharts import options as opts # 准数据 shanxi_city = ["西安市", "延安市", "咸阳市", "渭南市", "安康市", "汉中市", "宝鸡市", "铜川市", "商洛市", "榆林市", "韩城市", "杨凌示范区"]
shanxi_data = [46, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 绘制陕西疫情地图 map = (
Map()
.add('陕西省', [(i, j) for i, j in zip(shanxi_city, shanxi_data)], '陕西')
.set_global_opts(title_opts=opts.TitleOpts(title='陕西省新增感染病例疫情图'), visualmap_opts=opts.VisualMapOpts(max_=50, is_piecewise=True))
) # 渲染数据 map.render('陕西省新增感染病例疫情图.html')
运行之后,得到的效果图如下所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
这里给大家分享轮播效果图的代码,原理倒是不难,后面自己直接套用就行,代码如下:
from pyecharts.charts import Map, Timeline from pyecharts import options as opts # 1. 准数据 shanxi_city = ["西安市", "延安市", "咸阳市", "渭南市", "安康市", "汉中市", "宝鸡市", "铜川市", "商洛市", "榆林市", "韩城市", "杨凌示范区"] xinzeng = [46, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] xianyou = [1747, 13, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0] leiji = [2094, 21, 31, 18, 26, 26, 13, 8, 7, 3, 1, 1] zhiyu = [304, 8, 20, 17, 26, 26, 13, 8, 7, 3, 1, 1] siwang = [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 2. 绘制新增疫情地图:格式一 map1 = ( Map(init_opts=opts.InitOpts(width="700px", height="300px", theme="blue")) .add('新增病例', [(i, j) for i, j in zip(shanxi_city, xinzeng)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=50)) ) # 3. 绘制现有疫情地图:格式二 map2 = ( Map() .add('现有病例', [(i, j) for i, j in zip(shanxi_city, xianyou)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=1750, is_piecewise=True)) ) # 4. 绘制累计疫情地图:格式三 map3 = ( Map() .add('累计病例', [(i, j) for i, j in zip(shanxi_city, leiji)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=2100, is_piecewise=True)) ) # 5. 绘制治愈疫情地图:格式四 map4 = ( Map() .add('治愈病例', [(i, j) for i, j in zip(shanxi_city, zhiyu)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=310, is_piecewise=True)) ) # 6. 绘制死亡疫情地图:格式五 map5 = ( Map() .add('死亡病例', [(i, j) for i, j in zip(shanxi_city, siwang)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=3, is_piecewise=True)) ) # 7. 创建组合类对象 timeline = Timeline(init_opts=opts.InitOpts(width='720px', height='350px')) # 8. 在组合对象中添加需要组合的图表对象 timeline.add(chart=map1, time_point="陕西省新增病例疫情图") timeline.add(chart=map2, time_point="陕西省现有病例疫情图") timeline.add(chart=map3, time_point="陕西省累计病例疫情图") timeline.add(chart=map4, time_point="陕西省治愈病例疫情图") timeline.add(chart=map5, time_point="陕西省死亡病例疫情图") timeline.add_schema(is_auto_play=True, play_interval=2000) # 9. 渲染数据 timeline.render('陕西省疫情轮播图.html')
实现的效果图如下:
实际上它是动态的,我这里没有转gif格式,看上去有点干巴,问题不大。
大家好,我是Python进阶者。这篇文章主要基于百度疫情实时大数据报告数据,利用了Python中的可视化库pyecharts给大家分享了省位地图的制作和轮播图的制作方法。
最后也欢迎大家积极尝试,有好的内容也可以分享给我噢!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20