
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个学生娃子找我帮忙做点可视化的作业,其实倒是也不难,觉得挺有意思,这里拿出来给大家分享,主要是完成了轮播图的制作,显得作业高大上一些。
首先是数据来源,来自百度疫情实时大数据报告,如下图所示。
新增感染病例
这里直接上代码和效果图,如下所示:
from pyecharts.charts import Map, Timeline from pyecharts import options as opts # 准数据 shanxi_city = ["西安市", "延安市", "咸阳市", "渭南市", "安康市", "汉中市", "宝鸡市", "铜川市", "商洛市", "榆林市", "韩城市", "杨凌示范区"]
shanxi_data = [46, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 绘制陕西疫情地图 map = (
Map()
.add('陕西省', [(i, j) for i, j in zip(shanxi_city, shanxi_data)], '陕西')
.set_global_opts(title_opts=opts.TitleOpts(title='陕西省新增感染病例疫情图'), visualmap_opts=opts.VisualMapOpts(max_=50, is_piecewise=True))
) # 渲染数据 map.render('陕西省新增感染病例疫情图.html')
运行之后,得到的效果图如下所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
这里给大家分享轮播效果图的代码,原理倒是不难,后面自己直接套用就行,代码如下:
from pyecharts.charts import Map, Timeline from pyecharts import options as opts # 1. 准数据 shanxi_city = ["西安市", "延安市", "咸阳市", "渭南市", "安康市", "汉中市", "宝鸡市", "铜川市", "商洛市", "榆林市", "韩城市", "杨凌示范区"] xinzeng = [46, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] xianyou = [1747, 13, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0] leiji = [2094, 21, 31, 18, 26, 26, 13, 8, 7, 3, 1, 1] zhiyu = [304, 8, 20, 17, 26, 26, 13, 8, 7, 3, 1, 1] siwang = [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 2. 绘制新增疫情地图:格式一 map1 = ( Map(init_opts=opts.InitOpts(width="700px", height="300px", theme="blue")) .add('新增病例', [(i, j) for i, j in zip(shanxi_city, xinzeng)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=50)) ) # 3. 绘制现有疫情地图:格式二 map2 = ( Map() .add('现有病例', [(i, j) for i, j in zip(shanxi_city, xianyou)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=1750, is_piecewise=True)) ) # 4. 绘制累计疫情地图:格式三 map3 = ( Map() .add('累计病例', [(i, j) for i, j in zip(shanxi_city, leiji)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=2100, is_piecewise=True)) ) # 5. 绘制治愈疫情地图:格式四 map4 = ( Map() .add('治愈病例', [(i, j) for i, j in zip(shanxi_city, zhiyu)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=310, is_piecewise=True)) ) # 6. 绘制死亡疫情地图:格式五 map5 = ( Map() .add('死亡病例', [(i, j) for i, j in zip(shanxi_city, siwang)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=3, is_piecewise=True)) ) # 7. 创建组合类对象 timeline = Timeline(init_opts=opts.InitOpts(width='720px', height='350px')) # 8. 在组合对象中添加需要组合的图表对象 timeline.add(chart=map1, time_point="陕西省新增病例疫情图") timeline.add(chart=map2, time_point="陕西省现有病例疫情图") timeline.add(chart=map3, time_point="陕西省累计病例疫情图") timeline.add(chart=map4, time_point="陕西省治愈病例疫情图") timeline.add(chart=map5, time_point="陕西省死亡病例疫情图") timeline.add_schema(is_auto_play=True, play_interval=2000) # 9. 渲染数据 timeline.render('陕西省疫情轮播图.html')
实现的效果图如下:
实际上它是动态的,我这里没有转gif格式,看上去有点干巴,问题不大。
大家好,我是Python进阶者。这篇文章主要基于百度疫情实时大数据报告数据,利用了Python中的可视化库pyecharts给大家分享了省位地图的制作和轮播图的制作方法。
最后也欢迎大家积极尝试,有好的内容也可以分享给我噢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03