作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个学生娃子找我帮忙做点可视化的作业,其实倒是也不难,觉得挺有意思,这里拿出来给大家分享,主要是完成了轮播图的制作,显得作业高大上一些。
首先是数据来源,来自百度疫情实时大数据报告,如下图所示。
新增感染病例
这里直接上代码和效果图,如下所示:
from pyecharts.charts import Map, Timeline from pyecharts import options as opts # 准数据 shanxi_city = ["西安市", "延安市", "咸阳市", "渭南市", "安康市", "汉中市", "宝鸡市", "铜川市", "商洛市", "榆林市", "韩城市", "杨凌示范区"]
shanxi_data = [46, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 绘制陕西疫情地图 map = (
Map()
.add('陕西省', [(i, j) for i, j in zip(shanxi_city, shanxi_data)], '陕西')
.set_global_opts(title_opts=opts.TitleOpts(title='陕西省新增感染病例疫情图'), visualmap_opts=opts.VisualMapOpts(max_=50, is_piecewise=True))
) # 渲染数据 map.render('陕西省新增感染病例疫情图.html')
运行之后,得到的效果图如下所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
这里给大家分享轮播效果图的代码,原理倒是不难,后面自己直接套用就行,代码如下:
from pyecharts.charts import Map, Timeline from pyecharts import options as opts # 1. 准数据 shanxi_city = ["西安市", "延安市", "咸阳市", "渭南市", "安康市", "汉中市", "宝鸡市", "铜川市", "商洛市", "榆林市", "韩城市", "杨凌示范区"] xinzeng = [46, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] xianyou = [1747, 13, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0] leiji = [2094, 21, 31, 18, 26, 26, 13, 8, 7, 3, 1, 1] zhiyu = [304, 8, 20, 17, 26, 26, 13, 8, 7, 3, 1, 1] siwang = [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 2. 绘制新增疫情地图:格式一 map1 = ( Map(init_opts=opts.InitOpts(width="700px", height="300px", theme="blue")) .add('新增病例', [(i, j) for i, j in zip(shanxi_city, xinzeng)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=50)) ) # 3. 绘制现有疫情地图:格式二 map2 = ( Map() .add('现有病例', [(i, j) for i, j in zip(shanxi_city, xianyou)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=1750, is_piecewise=True)) ) # 4. 绘制累计疫情地图:格式三 map3 = ( Map() .add('累计病例', [(i, j) for i, j in zip(shanxi_city, leiji)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=2100, is_piecewise=True)) ) # 5. 绘制治愈疫情地图:格式四 map4 = ( Map() .add('治愈病例', [(i, j) for i, j in zip(shanxi_city, zhiyu)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=310, is_piecewise=True)) ) # 6. 绘制死亡疫情地图:格式五 map5 = ( Map() .add('死亡病例', [(i, j) for i, j in zip(shanxi_city, siwang)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=3, is_piecewise=True)) ) # 7. 创建组合类对象 timeline = Timeline(init_opts=opts.InitOpts(width='720px', height='350px')) # 8. 在组合对象中添加需要组合的图表对象 timeline.add(chart=map1, time_point="陕西省新增病例疫情图") timeline.add(chart=map2, time_point="陕西省现有病例疫情图") timeline.add(chart=map3, time_point="陕西省累计病例疫情图") timeline.add(chart=map4, time_point="陕西省治愈病例疫情图") timeline.add(chart=map5, time_point="陕西省死亡病例疫情图") timeline.add_schema(is_auto_play=True, play_interval=2000) # 9. 渲染数据 timeline.render('陕西省疫情轮播图.html')
实现的效果图如下:
实际上它是动态的,我这里没有转gif格式,看上去有点干巴,问题不大。
大家好,我是Python进阶者。这篇文章主要基于百度疫情实时大数据报告数据,利用了Python中的可视化库pyecharts给大家分享了省位地图的制作和轮播图的制作方法。
最后也欢迎大家积极尝试,有好的内容也可以分享给我噢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30