
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个学生娃子找我帮忙做点可视化的作业,其实倒是也不难,觉得挺有意思,这里拿出来给大家分享,主要是完成了轮播图的制作,显得作业高大上一些。
首先是数据来源,来自百度疫情实时大数据报告,如下图所示。
新增感染病例
这里直接上代码和效果图,如下所示:
from pyecharts.charts import Map, Timeline from pyecharts import options as opts # 准数据 shanxi_city = ["西安市", "延安市", "咸阳市", "渭南市", "安康市", "汉中市", "宝鸡市", "铜川市", "商洛市", "榆林市", "韩城市", "杨凌示范区"]
shanxi_data = [46, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 绘制陕西疫情地图 map = (
Map()
.add('陕西省', [(i, j) for i, j in zip(shanxi_city, shanxi_data)], '陕西')
.set_global_opts(title_opts=opts.TitleOpts(title='陕西省新增感染病例疫情图'), visualmap_opts=opts.VisualMapOpts(max_=50, is_piecewise=True))
) # 渲染数据 map.render('陕西省新增感染病例疫情图.html')
运行之后,得到的效果图如下所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
这里给大家分享轮播效果图的代码,原理倒是不难,后面自己直接套用就行,代码如下:
from pyecharts.charts import Map, Timeline from pyecharts import options as opts # 1. 准数据 shanxi_city = ["西安市", "延安市", "咸阳市", "渭南市", "安康市", "汉中市", "宝鸡市", "铜川市", "商洛市", "榆林市", "韩城市", "杨凌示范区"] xinzeng = [46, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] xianyou = [1747, 13, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0] leiji = [2094, 21, 31, 18, 26, 26, 13, 8, 7, 3, 1, 1] zhiyu = [304, 8, 20, 17, 26, 26, 13, 8, 7, 3, 1, 1] siwang = [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 2. 绘制新增疫情地图:格式一 map1 = ( Map(init_opts=opts.InitOpts(width="700px", height="300px", theme="blue")) .add('新增病例', [(i, j) for i, j in zip(shanxi_city, xinzeng)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=50)) ) # 3. 绘制现有疫情地图:格式二 map2 = ( Map() .add('现有病例', [(i, j) for i, j in zip(shanxi_city, xianyou)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=1750, is_piecewise=True)) ) # 4. 绘制累计疫情地图:格式三 map3 = ( Map() .add('累计病例', [(i, j) for i, j in zip(shanxi_city, leiji)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=2100, is_piecewise=True)) ) # 5. 绘制治愈疫情地图:格式四 map4 = ( Map() .add('治愈病例', [(i, j) for i, j in zip(shanxi_city, zhiyu)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=310, is_piecewise=True)) ) # 6. 绘制死亡疫情地图:格式五 map5 = ( Map() .add('死亡病例', [(i, j) for i, j in zip(shanxi_city, siwang)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=3, is_piecewise=True)) ) # 7. 创建组合类对象 timeline = Timeline(init_opts=opts.InitOpts(width='720px', height='350px')) # 8. 在组合对象中添加需要组合的图表对象 timeline.add(chart=map1, time_point="陕西省新增病例疫情图") timeline.add(chart=map2, time_point="陕西省现有病例疫情图") timeline.add(chart=map3, time_point="陕西省累计病例疫情图") timeline.add(chart=map4, time_point="陕西省治愈病例疫情图") timeline.add(chart=map5, time_point="陕西省死亡病例疫情图") timeline.add_schema(is_auto_play=True, play_interval=2000) # 9. 渲染数据 timeline.render('陕西省疫情轮播图.html')
实现的效果图如下:
实际上它是动态的,我这里没有转gif格式,看上去有点干巴,问题不大。
大家好,我是Python进阶者。这篇文章主要基于百度疫情实时大数据报告数据,利用了Python中的可视化库pyecharts给大家分享了省位地图的制作和轮播图的制作方法。
最后也欢迎大家积极尝试,有好的内容也可以分享给我噢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08