作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个学生娃子找我帮忙做点可视化的作业,作业内容包括采集网易云音乐热评评论内容,数据量1W作业足够,然后就是做点数据分析相关的工作即可。这份大作业里边有网络爬虫,有数据分析和数据处理,还有可视化,算是一个大实验了,还需要上交实验报告。
首先是数据来源,来自网易云音乐热评,代码这里就不放出来了,调用了API获取的,抓取难度就少了许多,这里不在赘述了。
时间处理
下面的代码主要是评论时间分布,主要是针对时间列做了数据处理,常规操作,你也对照的去以日期和月份去挖掘下有意思的事情。
import pandas as pd from pyecharts import Line # 读取数据 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna() # 获取时间 df['time'] = [int(i.split(' ')[1].split(':')[0]) for i in df['date']] # 分组汇总 date_message = df.groupby(['time'])
date_com = date_message['time'].agg(['count'])
date_com.reset_index(inplace=True) # 绘制走势图 attr = date_com['time']
v1 = date_com['count']
line = Line("歌曲被爆抄袭后-评论的时间分布", title_pos='center', title_top='18', width=800, height=400)
line.add("", attr, v1, is_smooth=True, is_fill=True, area_color="#000", is_xaxislabel_align=True, xaxis_min="dataMin", area_opacity=0.3, mark_point=["max"], mark_point_symbol="pin", mark_point_symbolsize=55)
line.render("歌曲被爆抄袭后-评论的时间分布.html")
运行之后,得到的效果图如下所示:
可以看到评论的小伙伴喜欢在下午临近下班和晚上的时候进行评论。
代码和上面差不多,只需要更改下数据即可。
import pandas as pd # 读取数据 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna() # 分组汇总 user_message = df.groupby(['userid'])
user_com = user_message['userid'].agg(['count'])
user_com.reset_index(inplace=True)
user_com_last = user_com.sort_values('count', ascending=False)[0:10]
print(user_com_last)
运行之后,得到的结果如下所示:
可以看到有忠粉,狂粉,评论数据上百,恐怖如斯。
词云这个老生常谈了,经常做,直接套用模板,改下底图即可,代码如下:
from wordcloud import WordCloud import matplotlib.pyplot as plt import pandas as pd import random import jieba # 设置文本随机颜色 def random_color_func(word=None, font_size=None, position=None, orientation=None, font_path=None, random_state=None): h, s, l = random.choice([(188, 72, 53), (253, 63, 56), (12, 78, 69)]) return "hsl({}, {}%, {}%)".format(h, s, l) # 读取信息 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna()
words = pd.read_csv('chineseStopWords.txt', encoding='gbk', sep='t', names=['stopword']) # 分词 text = '' for line in df['comment']:
text += ' '.join(jieba.cut(str(line), cut_all=False)) # 停用词 stopwords = set('')
stopwords.update(words['stopword'])
backgroud_Image = plt.imread('music.jpg')
wc = WordCloud(
background_color='white',
mask=backgroud_Image,
font_path='FZSTK.TTF',
max_words=2000,
max_font_size=250,
min_font_size=15,
color_func=random_color_func,
prefer_horizontal=1,
random_state=50,
stopwords=stopwords
)
wc.generate_from_text(text) # img_colors = ImageColorGenerator(backgroud_Image) # 看看词频高的有哪些 process_word = WordCloud.process_text(wc, text)
sort = sorted(process_word.items(), key=lambda e: e[1], reverse=True)
print(sort[:50])
plt.imshow(wc)
plt.axis('off')
wc.to_file("网易云音乐评论词云.jpg")
print('生成词云成功!')
最后生成的词云图如下所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
感觉还是年轻的粉丝居多啊!
这个代码稍微复杂一些了,毕竟涉及到地图,代码如下:
import pandas as pd from pyecharts import Map def city_group(cityCode): """
城市编码
""" city_map = { '11': '北京', '12': '天津', '31': '上海', '50': '重庆', '5e': '重庆', '81': '香港', '82': '澳门', '13': '河北', '14': '山西', '15': '内蒙古', '21': '辽宁', '22': '吉林', '23': '黑龙江', '32': '江苏', '33': '浙江', '34': '安徽', '35': '福建', '36': '江西', '37': '山东', '41': '河南', '42': '湖北', '43': '湖南', '44': '广东', '45': '广西', '46': '海南', '51': '四川', '52': '贵州', '53': '云南', '54': '西藏', '61': '陕西', '62': '甘肃', '63': '青海', '64': '宁夏', '65': '新疆', '71': '台湾', '10': '其他',
}
cityCode = str(cityCode) return city_map[cityCode[:2]] # 读取数据 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna() # 进行省份匹配 df['location'] = df['city'].apply(city_group) # 分组汇总 loc_message = df.groupby(['location'])
loc_com = loc_message['location'].agg(['count'])
loc_com.reset_index(inplace=True) # 绘制地图 value = [i for i in loc_com['count']]
attr = [i for i in loc_com['location']]
print(value)
print(attr)
map = Map("歌曲被爆抄袭后评论用户的地区分布图", title_pos='center', title_top=0)
map.add("", attr, value, maptype="china", is_visualmap=True, visual_text_color="#000", is_map_symbol_show=False, visual_range=[0, 60])
map.render('歌曲被爆抄袭后评论用户的地区分布图.html')
最后得到的效果图如下所示:
可以看到四川、广东省的评论数量居多。
代码和上面的差不多,这里不再赘述,直接上效果图了。
可以看到女粉丝占据了大头。
大家好,我是Python进阶者。这篇文章主要基于网易云热评数据,利用了Python中的数据处理库pandas进行数据处理和分析,并利用可视化库pyecharts给大家分享了相关图形的制作方法,并发现了一些有趣的数据分析结果。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13