
作者:CHEONG AI
来源:机器学习与知识图谱
本文分享一篇ICLR 2021的文章AdaGCN:Adaboosting Graph Convolutional Networks into Deep Models,AdaGCN模型的核心思想是将传统机器学习中AdaBoost的思想引入到图神经网络中,另外,与之前深层图模型直接堆叠多个卷积层不同,AdaGCN在所有网络层之间共享相同的神经网络架构,然后进行递归优化,类似于RNN。
Paper:https://arxiv.org/abs/1908.05081
Github:https://github.com/datake/AdaGCN
一、摘要
深度图模型仍是一个有待研究的问题,关键之处在于如何有效地汇聚来自多跳邻居节点的特征信息。在本文中,通过将AdaBoost融入到图网络中提出了一个类似于RNN的深度图模型AdaGCN,能够以Adaboost的方式高效的抽取多跳邻居特征信息,不同于之前的深度图模型直接堆叠多个卷积层,AdaGCN在所有网络层之间共享相同的神经网络架构。另外,从理论角度分析了AdaGCN和现有的GCN模型的关联,最后,通过大量的实验,证明了我们的方法在不同的标签率和计算优势下始终保持最先进的性能。
二、模型
首先,最简单的两个卷积层的GCN模型公式如下
其中输入是节点的Raw Features,输出是经过两个卷积层的最终表征。ReLU是一个非线性激活函数。但是,我们认为对于多层GCN网络不需要太多的非线性变化,原因在于节点特征是简单的一维向量而不是多维的。这个想法在SGC模型也已经提出过,直接将非线性变化ReLU函数去除的SGC模型的汇聚公式如下所示
在SGC模型中,将RuLU操作去除后确实在一定程度上缓解了深度图模型常出现的Over-Smoothing问题,并且计算效率也更快;但是,我们认为,对于这种多层堆叠的GCN网络来说,没有了ReLU操作的多层堆叠线性变换也会很大程度降低模型的表征能力,同时也通过实验证明了这个想法。
因此,在本文中,我们提出了一个新的非线性函数来替换没有激活函数的线性变换,公式如下所示
那么,如何使用AdaBoost?其实就是把深度模型的每一层输出的结果放到一个弱分类器中计算,并使用了SAMME(Stagewise Additive Modeling using a Multi-class Exponential Loss function)算法将多个弱分类器结合起来
如上图所示,我们直接使用基分类器f函数来抽取特征信息,当前层的加权错误概率以及基分类器的权重以如下方式计算
为了得到一个正的权重,需要保证
同时,在传播过程中向错误的节点增加权重以保证其的值减少,也就是对性能差的分类器给予较少的权重
然后,利用Adaboost方法将不同层的预测结果进行组合,得到最终的预测结果
我们也提供了AdaGCN的简化形势
三、实验
我们是在Cora,Citeseer,Pubmed,MS Academic和Reddit五个数据集上进行了实验,通过run 100次实验取平均来保证结果的置信度,取得了SOTA效果,
并且,如下图所示,随着模型深度增加,模型性能不会因为Over-Smoothing问题而下滑
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20