以下是我作为数据科学家管理自己的可重复使用的Python代码的一些方法,从最常用的代码到最不常用的代码,并针对初学者介绍。
分享38
有很多不同的方法来管理你自己的代码,这将取决于你的要求、个性、技术知识、角色和许多其他因素。一个经验丰富的开发者可能会有一个非常规范的方法来组织他们的代码,跨越多种语言、项目和用例,而一个很少写自己的代码的数据分析师可能会因为缺乏必要而更加临时和缺乏动力。其实没有什么对错之分,这只是一个对你有用的问题,而且是合适的。
具体地说,我所说的“管理代码”是指如何组织、存储和调用您自己编写并发现作为编程工具箱的长期补充有用的不同代码片段。编程都是关于自动化的,因此,如果作为一个编写代码的人,你发现自己在重复执行类似的任务,那么以某种方式自动调用与该任务相关的代码才有意义。
这就是为什么您已经在使用第三方库。无需每次使用时从头开始重新实现支持向量机代码库;相反,您可以使用一个库(可能是Scikit learn),并利用大量人员的集体工作,随着时间的推移完善一些代码。
将这个想法扩展到个人编程领域才有意义。您可能已经在这样做了(我希望您是这样),但如果不是的话,以下是我作为一名数据科学家为管理自己的可重用Python代码而确定的几种方法,从最常用的代码使用到最不常用的代码使用。
完整的库
这是最通用的方法,也可以说是最 "专业 "的方法;但是,仅仅这一点并不意味着它在任何时候都是正确的选择。
如果你发现你在许多用例中使用相同的功能,并且经常这样做,这就是要走的路。如果你想重用的功能很容易被参数化,这也是有意义的;也就是说,通过编写和调用一个通用的函数,你可以在每次调用时定义变量,就可以反复地处理这个任务。
例如,我经常发现我想在一个字符串中找到某个子串的第n次出现,而Python标准库中没有这样的函数。因此,我有一段简单的代码,它接受一个字符串、子串和我要找的第n次出现作为输入,并返回这个第n次出现在字符串中开始的位置(很久以前从这里搬来的)。
def find_nth(haystack, needle, n):
start = haystack.find(needle)
while start >= 0 and n > 1:
start = haystack.find(needle, start+len(needle))
n -= 1
return start
由于我处理了大量的文本处理,我把它和我经常使用的许多其他文本处理函数一起收集起来,并创建了一个库,像其他Python库一样驻留在我的计算机上,并且能够像其他库一样导入这个库。创建这个库的步骤有些冗长,虽然很简单,所以我不会在这里介绍,但这篇文章是众多做得很好的文章之一。
因此,现在我有了一个textproc库,我可以很容易地导入和使用我的find_nth函数,而且可以随心所欲地使用,而不必在我写的每个程序中都复制和粘贴该函数。
from textproc import find_nth
segment = line[:find_nth(line, ',', 4)].strip()
另外,如果我想扩展这个库,增加更多的功能,或者改变现有的find_nthcode,我可以在一个地方完成,只需重新导入。
特定项目的共享脚本
也许你不需要一个完整的库,因为你想重用的代码似乎没有超出你目前正在进行的项目的用途,但你确实需要在一个特定的项目中重用它。在这种情况下,你可以把这些函数放在一个脚本中,并简单地按名称导入该脚本。这是一个可怜的女人的图书馆,但它往往正是我们所需要的。
在我的研究生工作中,我不得不写很多与无监督学习有关的代码,特别是k-means聚类。我写了一些初始化中心点、计算数据点和中心点之间的距离、重新计算中心点等的函数,并使用不同的算法完成了许多这些任务。我很快发现,保留一个单独的脚本并复制其中的一些算法函数并不是最佳选择,因此将它们移出到自己的脚本中,以便导入。它的工作方式几乎与库相同,但这个过程是特定路径的,而且只为这个项目而设。
很快我就有了不同的中心点初始化函数和距离计算函数的脚本,以及数据加载和处理函数。随着这些代码变得越来越多的参数化和普遍有用,这些代码最终进入了一个合法的库。
至少在我的经验中,事情似乎就是这样发展的。你在你的脚本中写了一个你现在需要使用的函数,然后你使用了它。项目扩大了,或者你转到了一个类似的项目,你意识到现在拥有同样的功能会很方便。于是,这个功能被下放到一个自己的脚本中,并被你导入使用。如果这种有用性持续到近期,并且你发现这个函数有更普遍和更长期的用途,那么这个函数现在就会被添加到一个现有的库中,或者成为一个新库的基础。
然而,导入简单脚本的另一个具体有用的方面是在使用Jupyter笔记本的时候。鉴于Jupyter笔记本中的大部分内容都具有临时性、探索性和实验性,我并不喜欢将笔记本作为模块导入其他笔记本中。如果我发现一个以上的笔记本经常使用一些代码摘录,那么这些代码就会被下放到存储在同一文件夹中的脚本中,然后被导入到笔记本中。这种方法对我来说更有意义,并提供了更多的稳定性,因为我知道另一个笔记本所依赖的一个笔记本没有被以有害的方式编辑过。
特定任务的模板
我发现我经常重复执行一些相同的任务,这些任务不适合被参数化,或者是可以被参数化的任务,但要付出更多的努力,这是不值得的。在这种情况下,我采用了代码模板化,或称锅炉式模板化。这就是我在本文一开始就想避免的复制和粘贴代码的做法,但有时这也是正确的选择。
例如,我经常需要对Pandas DataFrame的内容进行 "列表",因为缺乏一个更好的词,虽然写一个函数可以确定列的数量,可以接受作为输入的列,等等,但往往输出也需要调整,所有这些都表明写一个函数太耗时了。
在这种情况下,我只是写了一个很容易改变的脚本模板,并把它放在一个类似模板的文件夹里,很方便。下面是listify_df的摘录,它从CSV文件到Pandas DataFrame,再到想要的HTML输出。。
在这种情况下,清晰的文件名和文件夹组织有助于管理这些经常有用的片段。
简短的单行字和块
最后,有很多重复的片段你可能经常输入。那么你为什么要这样做呢?
你应该利用文本扩展工具,在需要时插入简短的 "短语"。我使用AutoKey来管理这些短语,这些短语与触发关键词相关联,然后在输入这些关键词时插入。
例如,你是否为你的所有特定类型的项目导入大量相同的库?我有。例如,你可以通过输入#nlpimport来设置你在某一特定任务中所需要的所有导入,一旦输入,就会被识别为一个触发关键词,并被替换为以下内容。
import sys, requests
import numpy as np
import pandas as pd
import texthero
import scattertext as st
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
from datasets import load_metric, list_metrics
from transformers import pipeline
from fastapi import FastAPI
应该指出的是,有些IDE有这些功能。我自己一般使用美化的文本编辑器来编码,所以自动键在我的情况下是必要的(而且非常有用)。如果你有一个集成开发环境可以照顾到这一点,那太好了。关键是,你不应该一直重复输入这些东西。
以上是对作为一个数据科学家管理可重用的Python代码的概述。我希望你能发现它是有用的。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20