作者:俊欣
来源:关于数据分析与可视化
也就在前天,南太平洋岛国汤加发生火山喷发,有专门的专家学者分析,这可能是30年来全球规模最大的一次海底火山喷发,它引发的海啸以及火山灰将对周边的大气、洋流、淡水、农业以及民众健康等都造成不同程度的影响。
今天小编就用Python当中的folium模块以及其他的可视化库来对全球的火山情况做一个分析。
和以往一样,我们先导入需要数据分析过程当中需要用到的模块并且读取数据集,本次的数据集来自由kaggle网站,主要由美国著名的史密森学会整理所得
import pandas as pd import folium.plugins as plugins import folium
df_volcano = pd.read_csv("volcano.csv")
df_volcano.head()
output
数据集包含了这些个数据
df_volcano.columns
output
Index(['volcano_number', 'volcano_name', 'primary_volcano_type', 'last_eruption_year', 'country', 'region', 'subregion', 'latitude', 'longitude', 'elevation', 'tectonic_settings', 'evidence_category', 'major_rock_1', 'major_rock_2', 'major_rock_3', 'major_rock_4', 'major_rock_5', 'minor_rock_1', 'minor_rock_2', 'minor_rock_3', 'minor_rock_4', 'minor_rock_5', 'population_within_5_km', 'population_within_10_km', 'population_within_30_km', 'population_within_100_km'],
dtype='object')
我们通过调用folium模块来绘制一下全球各个火山的分布,代码如下
volcano_map = folium.Map() # 将每一行火山的数据添加进来 for i in range(0, df_volcano.shape[0]):
volcano = df_volcano.iloc[i]
folium.Marker([volcano['latitude'], volcano['longitude']], popup=volcano['volcano_name']).add_to(volcano_map)
volcano_map
output
上述代码的逻辑大致来看就是先实例化一个Map()对象,然后遍历每一行的数据,主要针对的是数据集当中的经纬度数据,并且在地图上打上标签,我们点击每一个标签都会自动弹出对应的火山的名称
当然出来的可视化结果不怎么美观,我们先通过简单的直方图来看一下全球火山的分布情况,代码如下
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 4))
volcano_country = pd.DataFrame(df_volcano.groupby(['country']).size()).sort_values(0, ascending=True)
volcano_country.columns = ['Count']
volcano_country.tail(10).plot(kind='barh', legend=False, ax=ax1)
ax1.set_title('Number of Volcanoes per Country')
ax1.set_ylabel('Country')
ax1.set_xlabel('Count')
volcano_region = pd.DataFrame(df_volcano.groupby(['region']).size()).sort_values(0, ascending=True)
volcano_region.columns = ['Count']
volcano_region.tail(10).plot(kind='barh', legend=False, ax=ax2)
ax2.set_title('Number of Volcanoes per Region')
ax2.set_ylabel('Region')
ax2.set_xlabel('Count')
plt.tight_layout()
plt.show()
output
可以看到火山主要集中在美国、印度尼西亚以及日本较多,而单从地域来看,南美以及日本、中国台湾和印度尼西亚等地存在着较多的火山
接下来我们来优化一下之前绘制的全球火山分布的地图,调用folium模块当中CircleMarker方法,并且设定好标记的颜色与大小
volcano_map = folium.Map(zoom_start=10)
groups = folium.FeatureGroup('') # 将每一行火山的数据添加进来 for i in range(0, df_volcano.shape[0]):
volcano = df_volcano.iloc[i]
groups.add_child(folium.CircleMarker([volcano['latitude'], volcano['longitude']],
popup=volcano['volcano_name'], radius=3, color='blue',
fill=True, fill_color='blue',fill_opacity=0.8))
volcano_map.add_child(groups)
volcano_map.add_child(folium.LatLngPopup())
output
然后我们来看一下这次火山的爆发地点,汤加共和国位于西南太平洋,属于大洋洲,具体位置是在西经175°和南纬20°左右,
import folium.plugins as plugins import folium m = folium.Map([-21.178986, -175.198242], zoom_start=10, control_scale=True, width='80%') m
output
第一个参数非常明显代表的是经纬度,而zoom_start参数代表的是缩放的程度,要是我们需要进一步放大绘制的图表,可以通过调整这个参数来实现,而width参数代表的则是最后图表绘制出来的宽度。
我们也可以在绘制出来的地图上面打上标记,例如画个圆圈,代码如下
m = folium.Map([-21.178986, -175.198242], zoom_start=12, control_scale=True, width='80%') folium.Circle(location = [-21.177986, -175.199242], radius = 1500, color = "purple").add_to(m) m
output
或者给圈出来的区域标上颜色,代码如下
m = folium.Map([-21.178986, -175.198242],
zoom_start=12,
control_scale=True, width='80%')
folium.Circle(location = [-21.177986, -175.199242], radius = 1500,
color = "purple", fill = True, fill_color = "red").add_to(m)
m
output
本次汤加火山爆发的VEI强度为5-6级,属于本世纪以来最强等级,后面连带引发的海啸影响了太平洋沿岸地区。太平洋沿岸的智利、日本等国的潮位站监测到30厘米至150厘米的海啸波,我国潮位站最大海啸波幅在20厘米以下,短期内太平洋沿岸国际航运或受到影响,需要重点关注美豆到港情况。
而从长期来看,热带火山爆发或提高全球极端天气发生概率,从而影响农作物的生长,对整个农产品的供应造成深远的影响,而如果火山灰大面积扩散,或进一步影响全球航空业,降低运输效率,拖累全球供应链。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16