作者:俊欣
来源:关于数据分析与可视化
也就在前天,南太平洋岛国汤加发生火山喷发,有专门的专家学者分析,这可能是30年来全球规模最大的一次海底火山喷发,它引发的海啸以及火山灰将对周边的大气、洋流、淡水、农业以及民众健康等都造成不同程度的影响。
今天小编就用Python当中的folium模块以及其他的可视化库来对全球的火山情况做一个分析。
和以往一样,我们先导入需要数据分析过程当中需要用到的模块并且读取数据集,本次的数据集来自由kaggle网站,主要由美国著名的史密森学会整理所得
import pandas as pd import folium.plugins as plugins import folium
df_volcano = pd.read_csv("volcano.csv")
df_volcano.head()
output
数据集包含了这些个数据
df_volcano.columns
output
Index(['volcano_number', 'volcano_name', 'primary_volcano_type', 'last_eruption_year', 'country', 'region', 'subregion', 'latitude', 'longitude', 'elevation', 'tectonic_settings', 'evidence_category', 'major_rock_1', 'major_rock_2', 'major_rock_3', 'major_rock_4', 'major_rock_5', 'minor_rock_1', 'minor_rock_2', 'minor_rock_3', 'minor_rock_4', 'minor_rock_5', 'population_within_5_km', 'population_within_10_km', 'population_within_30_km', 'population_within_100_km'],
dtype='object')
我们通过调用folium模块来绘制一下全球各个火山的分布,代码如下
volcano_map = folium.Map() # 将每一行火山的数据添加进来 for i in range(0, df_volcano.shape[0]):
volcano = df_volcano.iloc[i]
folium.Marker([volcano['latitude'], volcano['longitude']], popup=volcano['volcano_name']).add_to(volcano_map)
volcano_map
output
上述代码的逻辑大致来看就是先实例化一个Map()对象,然后遍历每一行的数据,主要针对的是数据集当中的经纬度数据,并且在地图上打上标签,我们点击每一个标签都会自动弹出对应的火山的名称
当然出来的可视化结果不怎么美观,我们先通过简单的直方图来看一下全球火山的分布情况,代码如下
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 4))
volcano_country = pd.DataFrame(df_volcano.groupby(['country']).size()).sort_values(0, ascending=True)
volcano_country.columns = ['Count']
volcano_country.tail(10).plot(kind='barh', legend=False, ax=ax1)
ax1.set_title('Number of Volcanoes per Country')
ax1.set_ylabel('Country')
ax1.set_xlabel('Count')
volcano_region = pd.DataFrame(df_volcano.groupby(['region']).size()).sort_values(0, ascending=True)
volcano_region.columns = ['Count']
volcano_region.tail(10).plot(kind='barh', legend=False, ax=ax2)
ax2.set_title('Number of Volcanoes per Region')
ax2.set_ylabel('Region')
ax2.set_xlabel('Count')
plt.tight_layout()
plt.show()
output
可以看到火山主要集中在美国、印度尼西亚以及日本较多,而单从地域来看,南美以及日本、中国台湾和印度尼西亚等地存在着较多的火山
接下来我们来优化一下之前绘制的全球火山分布的地图,调用folium模块当中CircleMarker方法,并且设定好标记的颜色与大小
volcano_map = folium.Map(zoom_start=10)
groups = folium.FeatureGroup('') # 将每一行火山的数据添加进来 for i in range(0, df_volcano.shape[0]):
volcano = df_volcano.iloc[i]
groups.add_child(folium.CircleMarker([volcano['latitude'], volcano['longitude']],
popup=volcano['volcano_name'], radius=3, color='blue',
fill=True, fill_color='blue',fill_opacity=0.8))
volcano_map.add_child(groups)
volcano_map.add_child(folium.LatLngPopup())
output
然后我们来看一下这次火山的爆发地点,汤加共和国位于西南太平洋,属于大洋洲,具体位置是在西经175°和南纬20°左右,
import folium.plugins as plugins import folium m = folium.Map([-21.178986, -175.198242], zoom_start=10, control_scale=True, width='80%') m
output
第一个参数非常明显代表的是经纬度,而zoom_start参数代表的是缩放的程度,要是我们需要进一步放大绘制的图表,可以通过调整这个参数来实现,而width参数代表的则是最后图表绘制出来的宽度。
我们也可以在绘制出来的地图上面打上标记,例如画个圆圈,代码如下
m = folium.Map([-21.178986, -175.198242], zoom_start=12, control_scale=True, width='80%') folium.Circle(location = [-21.177986, -175.199242], radius = 1500, color = "purple").add_to(m) m
output
或者给圈出来的区域标上颜色,代码如下
m = folium.Map([-21.178986, -175.198242],
zoom_start=12,
control_scale=True, width='80%')
folium.Circle(location = [-21.177986, -175.199242], radius = 1500,
color = "purple", fill = True, fill_color = "red").add_to(m)
m
output
本次汤加火山爆发的VEI强度为5-6级,属于本世纪以来最强等级,后面连带引发的海啸影响了太平洋沿岸地区。太平洋沿岸的智利、日本等国的潮位站监测到30厘米至150厘米的海啸波,我国潮位站最大海啸波幅在20厘米以下,短期内太平洋沿岸国际航运或受到影响,需要重点关注美豆到港情况。
而从长期来看,热带火山爆发或提高全球极端天气发生概率,从而影响农作物的生长,对整个农产品的供应造成深远的影响,而如果火山灰大面积扩散,或进一步影响全球航空业,降低运输效率,拖累全球供应链。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13