CDA数据分析师 出品
作者:Andrew Lombarti
编译:Mika
Kaggle是一个很流行的数据科学竞赛平台。在上面,你不仅可以参加各种数据分析题竞赛,还可以通过各行业的真实数据集来实践自己的技能。
在本文中我们将介绍10个数据集,从适合新手小白到高级进阶人群的都有。这些数据集非常有趣,而且还很适合在面试前练习技能。
下面让我们一起来看看吧!
泰坦尼克号数据集是Kaggle上最热门的数据集之一。这是一个很好的入门数据集,当中涉及到13个变量和超过1500个记录。该数据集中包含了乘坐泰坦尼克号的乘客信息。
目标是根据乘客的特征来预测他们是否能幸存下来。根据数据集,你可以看到已婚女性比单身男性有更高的存活概率。
该数据集中的变量有:
关于如何处理这个数据集,网上已经有很多教程了。如果你想挑战一下自己,不妨试着预测乘客在不同地点登船的存活率。
泰坦尼克号数据集链接:
https://www.kaggle.com/c/titanic
这个数据集是一个经典的二进制分类问题。目的是通过花萼长度,花萼宽度等属性预测鸢尾花属于(Setosa(山鸢尾),Versicolour(杂色鸢尾),Virginica(维吉尼亚鸢尾))三个种类中的哪一类。
例如,山鸢尾的花瓣较短,萼片较宽。假如花瓣长度大于3厘米,萼片小于6厘米,那么这种花很可能属于山鸢尾。
此数据集中的变量如下:
同样有许多可用于处理该数据集的教程。其中最流行的是“在鸢尾花数据集上使用Scikit Learn”。对于初学者来说,这是一个非常好的教程,当中因展示了如何使用scikit learn,还具有预构建的功能,能帮你轻松地训练模型。
鸢尾花数据集链接:
https://www.kaggle.com/uciml/iris
列车数据集也是Kaggle上很热门的一个数据集。该数据集包含了乘坐往返于波士顿和华盛顿特区的美铁列车上的乘客信息。
目的是预测乘客是否会在某站下车。根据数据集,可以看到在巴尔的摩下车的乘客比在费城下车的乘客下车的概率更高。
数据集中的变量如下:
根据这些变量,有多种方法可以预测某人是否会在某站下车。
列车数据集链接:
https://www.kaggle.com/c/train-occupancy-prediction/data
波士顿住房数据集包含波士顿市住房的信息。当中有超过20万条记录和18个变量,目标是预测房价是否昂贵。数据集有三个不同的类别,分别是:昂贵、正常以及便宜。
当中的变量包括:
如果你对数据科学领域感兴趣,这个数据集是一个很好的尝试。内容有趣而且不是太难。
波士顿住房数据集链接:
https://www.kaggle.com/c/boston-housing
酒精和药物关系数据集是练习数据可视化技能的绝佳数据集。它包含关于不同药物之间相互作用的信息。
该数据集的目标是根据两种药物的化学结构,从而预测它们是否会相互作用。例如,数据集中表示布洛芬和扑热息痛可以相互作用,因为它们都是抗炎药(NSAIDs)。
数据集中的变量包括:
这是一个很好的数据集,可以用来练习数据可视化技能。你可以在当中试着创建图表,显示不同药物之间的相互作用。
酒精与药物数据集链接:
https://www.kaggle.com/jessicali9530/kuc-hackathon-winter-2018
对于那些在数据科学方面比较有经验的人来说,威斯康星州乳腺癌数据集是一个很大的挑战。这个数据集包含了威斯康星州的乳腺癌患者的信息。
该数据集的目标是根据病人的特征来预测是否患有癌症。
例如,你可以从数据集中看到,肿瘤大小若小于0.50厘米,患者有98%的生存机会,而肿瘤大小大于或等于0.80厘米,患者只有15%的生存机会。
数据集中的变量有:
网上有一些关于如何处理这个数据集的教程。如果你想挑战下自己,可以尝试预测不同肿瘤大小的生存率。
威斯康星州乳腺癌数据集链接:
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
这个数据集是关于预测糖尿病的。这个比赛有超过15万个例子,你需要预测病人是否会患糖尿病(二元分类)。
变量相当简单,因为只有一个特征:
这项挑战的目标是预测病人在五年内是否会发展成糖尿病。这是练习二元分类问题技能的好方法。
印第安人糖尿病数据集链接:
https://www.kaggle.com/uciml/pima-indians-diabetes-database
亚马逊评论数据集很适合练习文本分析。当中包含了对亚马逊网站上产品的评论。
这个数据集很有趣,当中有正面和负面评论,数据集的目标是预测评论是正面还是负面的。
变量有:
关于如何处理这个数据集,也有很多教程。如果想加大难度,你可以尝试预测情感分析,然后在此基础上建立模型。
亚马逊评论数据集链接:
https://www.kaggle.com/bittlingmayer/amazonreviews
该数据集包含了很多手写体数字图像,当中由大小为28x28像素的图像组成,有6万个训练实例和1万个测试实例。
该数据集的目标是对训练集和测试集中的所有数字进行正确分类。对于这种类型的问题,通常要使用卷积神经网络(CNN)。
网上有很多关于如何处理这类问题的教程,所以我建议你先从基础知识开始,然后再继续学习更高级的方法。
MNIST手写数字数据集链接:
https://www.kaggle.com/c/digit-recognizer
CIFAR-100数据集非常适合练习机器学习的技能。该数据集包含了100张物体的图像,分为六个类别:飞机、汽车、猫、鹿、狗和船。每张图片是32x32像素,有三个颜色通道(红、绿、蓝)。
该数据的目标是预测每张图片属于这六类中的哪一类。
数据集中的变量有:
有很多关于如何应对这一挑战的教程。想加大难度的话,尝试预测以某种方式扭曲或变换的图像标签。
CIFAR-100数据集链接:
https://www.kaggle.com/fedesoriano/cifar100
结语:
本文中列出的10个数据集能很好地磨练你的数据分析技能。如果你是刚刚入门,可以先试着做一些比较简单的数据集,由浅到难,不断深入进阶。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30