作者:小伍哥
来源:小伍哥聊风控
大家好,我是小伍哥,今天给大家分享一个好像有用,好像又没啥用的奇奇怪怪的知识,风控嘛,就是玩儿。
〇、“本福特定律”是什么?
“本福特定律”(Benford's law),也称“本福特法则”,它说明一堆从实际生活得出的数据中,以1为首位数字的数(如12、135、1083首位数字均为1)的出现概率约为总数的三成,接近人们主观直觉得出的期望值1/9的3倍。
推广来说,越大的数,以它为首位数字甚至是首几位数字出现的概率就越低。在十进制首位数字的出现概率中,1最高(30.1%),逐渐递减,9最低(4.6%)。
在美国大选中,有人就使用了该定律质疑拜登选票异常,在统计了特朗普和拜登在威斯康星州密尔沃基县470多个选区的得票数首位数字后发现,特朗普的这一曲线较为符合“本福特定律”的曲线,而拜登的曲线形状则出现异常。拜登在包括威斯康星州密尔沃基、伊利诺伊州芝加哥和宾夕法尼亚州阿勒格尼的曲线均不满足“本福特定律”,而与此同时,特朗普在多个地区的曲线却又正好满足或基本满足该定律。
一、基本概念
本福特定律(也称为第一位数法或本福特分布)是一种概率分布,许多统计学的(但不是全部)数据集的第一个数字符合。例如,
15435 首位是 156 首位是 59001 首位是 9199 首位是 19 首位是 9
本福特定律通常可用作欺诈性数据的指标,并可协助审计会计数据。本福特的分布是一种不均匀的分布,较小的数字比较大的数字有更大的出现j可能。
二、数位分布概率第1位数字出现概率10.30120.17630.12540.09750.07960.06770.05880.05190.046
三、本福特分布图
四、本福特分布公式
六、本福特定律适用于哪类数据?
需要注意的是,“本福特定律”也有一定的使用条件。首先,数据样本需要尽可能的多,至少要在3000个以上;其次,数据样本跨度要大,比如人的身高就不满足“本福特定律”,因为大多数人身高在1米至2米这一区间;最后,数据样本应是自然的,不能有人为操控,例如手机号码和邮政编码不满足“本福特定律”,因为这些都是1开头或特定数字开头。
也正是因为有特定使用条件,“本福特定律”可用于检查各项数据是否存在造假行为,因为若有人为因素影响数据,所得首位数字的概率及概率曲线图将不符合“本福特定律”。
在大部分情况下,本福特定律可以适用于具有以下特征的数据:
虽然有以上的限制,但实际上在会计中,符合上述特征的数据非常普遍。
七、会计欺诈检测与取证分析
应收账款,应付账款,销售和费用数据均基于两种类型的变量相乘的值,即价格和数量。单独,价格和数量不太可能符合本福特定律,但很可能会成倍增加。这种会计数据也可能是正确的。大公司的交易级会计数据几乎总是会有大量的观察结果。
如果某些会计数据预计符合本福特定律但不符合,则并不一定意味着数据是欺诈性的。然而,这将为进一步调查提供充分的理由。
以下是如何对会计数据执行本福特分布分析的一些示例。
1)大型企业的应付账款数据
分析显示,大型企业的应付几款的数据的数字第一位数字中有很大比例的1。经过仔细检查后发现,与上一个会计期间相比,还有更多的支付支票略高于1000美元。前一期的大部分支票金额低于100美元。
在一起财务调查中,负责的财务官随后受到质疑,他们回答称他们决定汇总金额以试图减少支票。低数字金额的合并是偏离本福特定律的常见解释,使财务官的解释变得合情合理。
经过进一步调查,据透露,该官员正在向他们创建的虚假壳公司写支票。
2)本福特的分析应用于组织的费用数据
最初的本福特分析显示,数据的第一位数字中“非常大”的比例非常大。经过仔细检查,特定费用的许多条目达到45美元。发现费用对于运营组织至关重要,必须经常支付。调查了这笔特殊费用,然后被认为是合法的。
然后将Benford的分析应用于费用数据的副本,但省略了特定的频繁费用。发现排除该特定费用的数据与本福特的分布非常接近。
超越第一个数字推广本福特定律通过查看第一个数字以外的数字,可以增强Benford的分析。
八、广义本福特的分布表
本表的作用是表示分布规则还可以作用在不同的数位上。比如,0出现在第2位的概率是 11.97%,要高于平均值10%。
注意:由以上数据可以看出,在广义分布中,数字的出现概率要比第一个数字更加均匀。
九、一般分布公式
根据上面的数据,我们可以得到一般的分布公式
十、上市公司年报净利润数据验证本福特定律
我们用上市公司的利润数据来验证下本福特定律。
我们采用tushare接口获取2019、2020年年报(第4季度)数据,取其中的净利润数据,然后我们只考虑净利润为正的情况。
xxxxxxxxxxbr
# 验证本福特定律import tushare as ts # 股票数据获取的一个包import mathimport matplotlib.pyplot as pltimport pandas as pdfrom functools import reducefrom pylab import *# 这一句让pyplot支持中文显示mpl.rcParams['font.sans-serif'] = ['SimHei']# 获取首位的函数def firstDigital(x): x= round(x) while x >= 10: x //= 10 return x# 首位概率累加def addDigit(lst, digit): lst[digit-1]+=1 return lst# 理论值:每位概率理论值用于对比th_freq=[math.log((x+1)/x, 10) for x in range(1,10)]#分别获得2019,2020年报数据df= ts.get_report_data(2019, 4)# 只取净利润>0的数据,首先进行次数统计freq= reduce(addDigit, map(firstDigital, filter(lambda x:x>0, df['net_profits'])), [0]*9)# 再计算实际概率pr_freq= [x/sum(freq) for x in freq]print(th_freq)print(pr_freq)# 作图plt.title('用上市公司2019年报净利润数据验证本福特定律')plt.xlabel("首位数字")plt.ylabel("概率")plt.xticks(range(9), range(1,10))plt.plot(pr_freq,"r-",linewidth=2, label= '实际值')plt.plot(pr_freq, "go", markersize=5)plt.plot(th_freq,"b-",linewidth=1, label= '理论值')plt.grid(True)plt.legend()plt.show()
xxxxxxxxxxbr # 验证本福特定律brimport tushare as ts # 股票数据获取的一个包brimport mathbrimport matplotlib.pyplot as pltbrimport pandas as pdbrfrom functools import reducebrfrom pylab import *br# 这一句让pyplot支持中文显示brmpl.rcParams['font.sans-serif'] = ['SimHei']br# 获取首位的函数brdef firstDigital(x):br x= round(x)br while x >= 10:br x //= 10br return xbr# 首位概率累加brdef addDigit(lst, digit):br lst[digit-1]+=1br return lstbr# 理论值:每位概率理论值用于对比brth_freq=[math.log((x+1)/x, 10) for x in range(1,10)]br#分别获得2019,2020年报数据brdf= ts.get_report_data(2019, 4)br# 只取净利润>0的数据,首先进行次数统计brfreq= reduce(addDigit, map(firstDigital, filter(lambda x:x>0, df['net_profits'])), [0]*9)br# 再计算实际概率brpr_freq= [x/sum(freq) for x in freq]brprint(th_freq)brprint(pr_freq)br# 作图brplt.title('用上市公司2019年报净利润数据验证本福特定律')brplt.xlabel("首位数字")brplt.ylabel("概率")brplt.xticks(range(9), range(1,10))brplt.plot(pr_freq,"r-",linewidth=2, label= '实际值')brplt.plot(pr_freq, "go", markersize=5)brplt.plot(th_freq,"b-",linewidth=1, label= '理论值')brplt.grid(True)brplt.legend()brplt.show()
xxxxxxxxxxbr br
从图形上看,两者拟合度还是比较高的。据说有些上市公司数据造假就是被用本福特定律查出来的。所以不认真学习的话,造假都造不好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31