京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小伍哥
来源:小伍哥聊风控
今天放假了回家过年了,分享两个看异常分布的图,很好看,也很实用。不会用或者不会画的,随时私聊我。毕竟现在过年也没啥事。
一、箱线图
箱盒图(也称盒图,箱线图等)是在1977年由美国统计学家John Tukey发明,分析数据需要为定量数据。通过箱盒图,可以直观的探索数据特征。
箱盒图共有两个用途:1)直观地识别数据中异常值(离群点);2)直观地判断数据离散分布情况,了解数据分布状态。
箱盒图共由五个数值点构成,下边缘,25%分位数(Q1),中位数,75%分位数(Q3),上边缘。其中:
1)中横线 = 中位数
2)下边缘 = Q1 – 1.5 IQR 其中:IQR=75%分位数(Q3)-25%分位数(Q1)
3)上边缘 = Q3 + 1.5 IQR
特别说明:箱盒图里面的上边缘值并非最大值,下边缘值也不是最小值。
如果数据有存在离群点即异常值,他们超出最大或者最小观察值,此时将离群点以“圆点”形式进行展示。
#安装与加载包install.packages('ggplot2') library(ggplot2)#抽样部分数据 dsmall = diamonds[sample(nrow(diamonds),5000),]#比较基础的图形 ggplot(dsmall,aes(x=color,y=price,fill=color))+
geom_boxplot()+
scale_fill_manual(values=c('blue','cyan', 'yellow', 'orange', 'red', 'Cyan1', 'DeepPink1'))+
facet_grid(.~clarity )
ggplot(mpg,aes(x=trans,y=displ,fill=trans))+theme_bw()
+geom_boxplot()+theme(plot.title =element_text(size=20,face="bold",
color="red", hjust=0.5,vjust=0.5,lineheight=0.01,family="myFont"),
#axis.title.x=element_text(size=12,face="bold",color="black",hjust=0.5),
axis.title.y=element_text(size=12,face="bold",color="black",hjust=0.5),
#axis.text.x =element_text(size=08,face="plain",color="black",angle=90,vjust=0.5,lineheight=0.01,family="myFont"),
axis.text.y =element_text(size=08,face="plain",color="black",family="myFont"),
panel.grid=element_blank(),
panel.background = element_blank(), legend.position='none')
业务中的一些图,不同类目的商品价格,不同城市的消费水平等等,基本上能够一目了然的发现问题。是一个既实用又装逼的图,大家可以试试。
二、密度图
qplot(carat,data = dsmall,geom = c('density'),
fill = cut,colour = cut)
qplot(depth,data = dsmall,geom = c('density'),fill = cut,
colour = cut,alpha = I(2/10))
qplot(depth,data = dsmall,geom = c('density'),
fill = cut,colour = cut,alpha = I(2/10))
业务中的一些数据对比,为黑白样本同一个特征的分布对比,可以看到有比较大的不同
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01