企业要想更快地做出反应并提供一流的客户体验,就必须对数据管理进行全面的改造。到目前为止,技术已经解决了存储和处理大数据的问题。它也已经达到了将大数据用于深度分析的能力。当我们在做这件事的时候,预计到2025年,高级数据管理解决方案的全球市场规模将达到1229亿美元。
然而,数据源类型和数量的日益多样化继续阻碍着无缝数据生命周期。到目前为止,数据管理景观是捕捉和流式数据到一个集中的数据湖。该湖将进一步处理和清理结构解决方案中的数据集。展望未来,数据专业人员已经找到了一种新的方式,通过数据网状结构解决来源的可扩展性。
什么是数据网格?
数据网格是一种分布式架构解决方案,用于分析数据的生命周期管理。基于分散化,网状结构消除了数据可用性和可访问性方面的障碍。它使用户能够从多个来源捕捉和操作洞察力,而不论其位置和类型。随后,它执行自动查询,而不必将其传送到集中的数据湖。
网状结构的分布式架构分散了每个业务领域的所有权。这意味着每个领域都能控制分析和操作用例的数据的质量、隐私、新鲜度、准确性和合规性。
从集中式数据湖迁移到分布式网格
随着数据源的数量不断增加,数据湖无法按需进行整合。有了数据网,将大量的数据倾倒到湖中是一种濒临灭绝的做法。
新的数据管理框架确保所有节点的协作参与,每个节点控制一个特定的业务单元。它通过遵循 "数据即产品 "的原则做到这一点。这意味着每个数据集都被当作一个数字产品,由干净、完整和结论性的数据集组成。这些可以按需交付给任何人和任何地方。对于一个快速增长的数据管理生态系统来说,Mesh是一个有助于提供组织数据见解的方法。
所有权的分散化减少了对工程师和科学家的依赖性。每个业务部门都控制着自己的特定领域数据。然而,每个领域仍然依赖于数据建模、安全协议和治理合规的集中标准化政策。
使用数据网格和结构
任何关于数据管理的讨论,如果忽略了结构架构,都是不完整和不相关的。围绕着数据结构和网状结构相互竞争的事实,有一个神话。这是不正确的。Gartner对这两个标题进行了并列讨论,并澄清了事实。
数据结构是一个古老而相关的架构,它推动了不同行业对结构的持续和优化使用。它自动发现并提出一个管理架构,从而简化整个数据生命周期。它还假设支持验证数据对象和重用这些对象的上下文参考。一个Mesh通过消耗当前的主题专业技术和准备数据对象的解决方案来完成这个不同的工作。
有一个神话,围绕着数据结构和网状结构相互竞争的事实。这是不真实的。事实上,织物可以在从Mesh架构中提取最佳价值方面起到作用。
用基于实体的数据结构实施数据网格
考虑K2View的基于实体的数据结构架构。它可以将每个业务实体的数据保存在一个专属的微型数据库中,从而支持成百上千的这些数据库。进一步融合 "业务实体 "和 "数据作为产品 "的概念,他们的结构支持数据网状设计模式的实施。在这里,结构创建了一个来自多个来源的连接数据集的集成层。这为运营和分析工作负载提供了一个整体的景观视图。
基于实体的结构规范了所有数据产品的语义定义。根据规定,它建立了数据摄取方法和治理政策,以确保数据集的安全。鉴于结构的这种支持,网状模式在实体级存储方面表现得更好。
因此,对于网状分布式网络中的每个业务域,都会部署一个专属的结构节点。这些特定于某一业务实体的域拥有对服务和管道的本地控制,以便为消费者访问产品。
分散的数据所有权模式
企业必须从多个来源导入多种数据类型到一个集中的存储库,如数据湖。在这里,数据处理通常会消耗大量的精力,也容易出现错误。查询这种异质数据集进行分析,会直接打击成本。因此,数据专业人员一直在寻找一种替代这种集中式方法的方法。通过Mesh的分布式架构,他们能够实现每个商业实体的所有权分散。现在,这样的模式减少了产生定性见解的时间,从而增加了核心目的的价值--快速访问数据并影响关键业务决策。
分散化的方法解决了更多的问题。例如,传统数据管理中的查询方法可能会随着数据量的不可控制的增加而失去效率。它势必会迫使整个管道发生变化,最终无法做出反应。因此,随着数据源数量的增加,响应时间急剧减慢。这一直影响着提取数据价值和扩大业务成果的流程敏捷性。
通过分散化,Mesh将所有权分配给不同的领域,以满足传入数据量的挑战,并最终在他们的水平上对他们的相关集进行查询。因此,该架构使企业流程能够缩小事件和其消费分析之间的差距。企业能够在关键决策上有所改进。
通过提供数据即服务架构,Mesh为业务运营带来了灵活性。它不仅减少了IT积压,而且使数据团队能够只在精简和相关的数据流上工作。
因此,授权的消费者将很容易获得他们各自的数据集,而不会意识到背后的复杂性。
结论
从数字数据出发,web3.0致力于分散企业流程。而数据管理是这个方向上的一个重要用例。很明显,集中式的权威在一定程度上无法适应爆炸性的、传入的数据。等待和观察2022年将把数据网状结构放在前面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10