热线电话:13121318867

登录
首页大数据时代使用图形卷积背后的动机
使用图形卷积背后的动机
2022-02-16
收藏


图谱神经网络GNNs)近年来一直是一个快速发展的领域。根据2021年的《人工智能状况》报告,GNNs已经 "从小众领域发展为人工智能研究的最热门领域之一"  

 

本文是《用PyTorchScikit-Learn进行机器学习》一书的节选,该书是广受好评的畅销Python机器学习系列的新书,经过全面更新和扩展,涵盖了PyTorch、变换器、图神经网络和最佳实践。

 

在本节中,我们将看到为什么我们要在图上使用卷积,并讨论我们希望这些卷积具有什么属性。

 

在图像的背景下,我们可以把卷积看作是在图像上滑动卷积滤波器的过程,在每一步,滤波器和接受域(它目前在图像上的部分)之间的加权和被计算出来。滤波器可以被看作是一个特定特征的检测器。由于一些原因,这种特征检测的方法非常适合于图像,例如,我们可以在图像数据上设置以下先验条件。

 

1. 移位不变性。我们仍然可以识别图像中的一个特征,无论它位于何处(例如,经过翻译)。一只猫无论在图像的左上角、右下角还是其他地方,都能被识别为猫。

2. 2.位置性。附近的像素是密切相关的。

3. 3. 层次性。图像中较大的部分通常可以被分解成相关的较小部分的组合。一只猫有头和腿;头有眼睛和鼻子;眼睛有瞳孔和虹膜。

卷积适合处理图像的另一个原因是,可训练参数的数量并不取决于输入的维度。你可以在256×2569×9的图像上训练一系列的3×3卷积过滤器。(然而,如果同一幅图像以不同的分辨率呈现,其感受野以及因此而提取的特征将有所不同)。而对于更高分辨率的图像,我们可能要选择更大的核或增加额外的层来有效地提取有用的特征)。

 

和图像一样,图形也有天然的先验,这就证明了卷积方法的合理性。这两种数据,图像和图形,都有共同的位置性先验。然而,我们如何定义定位是不同的。在图像中,先验是在二维空间中的位置性,而在图形中,它是结构位置性。直观地说,这意味着相距一条边的节点比相距五条边的节点更有可能是相关的。例如,在一个引用图中,一个直接被引用的出版物,也就是一个边的距离,比一个有多个分离度的出版物更可能有相似的主题。

 

图数据的一个严格的先验是包络不变性,这意味着节点的排序不会影响输出。这在图1中得到了说明,改变图的节点排序不会改变图的结构

The motivation behind using graph convolutions
1:代表同一图形的不同邻接矩阵


 

由于同一图形可以由多个邻接矩阵表示,如图1所示,因此,任何图形卷积都需要具有包络不变性。

 

卷积方法对于图形来说也是可取的,因为它可以用一个固定的参数集对不同大小的图形发挥作用。可以说,这一特性对图来说比图像更重要。例如,有许多图像数据集具有固定的分辨率,在那里可以使用全连接方法(例如,使用多层感知器)。相比之下,大多数图形数据集包含不同大小的图形。通过Sebastian RaschkaYuxi (Hayden) LiuVahid Mirjalili的《PyTorchScikit-Learn机器学习》了解更多。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询