
图谱神经网络(GNNs)近年来一直是一个快速发展的领域。根据2021年的《人工智能状况》报告,GNNs已经 "从小众领域发展为人工智能研究的最热门领域之一"。
本文是《用PyTorch和Scikit-Learn进行机器学习》一书的节选,该书是广受好评的畅销Python机器学习系列的新书,经过全面更新和扩展,涵盖了PyTorch、变换器、图神经网络和最佳实践。
在本节中,我们将看到为什么我们要在图上使用卷积,并讨论我们希望这些卷积具有什么属性。
在图像的背景下,我们可以把卷积看作是在图像上滑动卷积滤波器的过程,在每一步,滤波器和接受域(它目前在图像上的部分)之间的加权和被计算出来。滤波器可以被看作是一个特定特征的检测器。由于一些原因,这种特征检测的方法非常适合于图像,例如,我们可以在图像数据上设置以下先验条件。
1. 移位不变性。我们仍然可以识别图像中的一个特征,无论它位于何处(例如,经过翻译)。一只猫无论在图像的左上角、右下角还是其他地方,都能被识别为猫。
2. 2.位置性。附近的像素是密切相关的。
3. 3. 层次性。图像中较大的部分通常可以被分解成相关的较小部分的组合。一只猫有头和腿;头有眼睛和鼻子;眼睛有瞳孔和虹膜。
卷积适合处理图像的另一个原因是,可训练参数的数量并不取决于输入的维度。你可以在256×256或9×9的图像上训练一系列的3×3卷积过滤器。(然而,如果同一幅图像以不同的分辨率呈现,其感受野以及因此而提取的特征将有所不同)。而对于更高分辨率的图像,我们可能要选择更大的核或增加额外的层来有效地提取有用的特征)。
和图像一样,图形也有天然的先验,这就证明了卷积方法的合理性。这两种数据,图像和图形,都有共同的位置性先验。然而,我们如何定义定位是不同的。在图像中,先验是在二维空间中的位置性,而在图形中,它是结构位置性。直观地说,这意味着相距一条边的节点比相距五条边的节点更有可能是相关的。例如,在一个引用图中,一个直接被引用的出版物,也就是一个边的距离,比一个有多个分离度的出版物更可能有相似的主题。
图数据的一个严格的先验是包络不变性,这意味着节点的排序不会影响输出。这在图1中得到了说明,改变图的节点排序不会改变图的结构:
图1:代表同一图形的不同邻接矩阵
由于同一图形可以由多个邻接矩阵表示,如图1所示,因此,任何图形卷积都需要具有包络不变性。
卷积方法对于图形来说也是可取的,因为它可以用一个固定的参数集对不同大小的图形发挥作用。可以说,这一特性对图来说比图像更重要。例如,有许多图像数据集具有固定的分辨率,在那里可以使用全连接方法(例如,使用多层感知器)。相比之下,大多数图形数据集包含不同大小的图形。通过Sebastian Raschka、Yuxi (Hayden) Liu和Vahid Mirjalili的《PyTorch和Scikit-Learn的机器学习》了解更多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09