当你在网上搜索时,大多数人都建议你在初级水平上呆上几年,然后再考虑转型或转到其他角色。与初级、中级和高级数据科学家相比,经验水平是有区别的。本文将介绍对所有工作角色的期望,以及向上爬的要求。
你是什么水平?
大多数人都会看数据科学家的技能、经验年限、教育水平、专业知识、管理技能等等。如何区分不同级别的数据科学家的区别,一个很好的理解是,你可以让数据科学家独自完成/处理一项任务多长时间,而不需要对他们进行检查。
用 "你可以让一个人独自完成/处理一项任务而不需要签到的时间有多长?"这个比喻,我们可以把不同的级别划分如下。:
- 初级数据科学家。你通常会每天签到,或者一天两次。他们将与中级和高级数据科学家进行大量的配对编程。
- 中级数据科学家。你将每周或每月检查几次,但是,他们应该有能力。他们还将与高级数据科学家进行配对编程,并在需要时为初级数据科学家提供建议和指导。
- 高级数据科学家。不需要向他们报到,因为他们完全有能力自己处理这个任务。
虽然人们的经验和技能水平很重要,但一个人拥有的知识和经验水平才是能够完成任务的关键。一个初级数据科学家可能会达到一个受阻的地步,并且不知道如何去克服它,而不去咨询高层。中级数据科学家也可能面临困难,但是,他们会更好地掌握如何自己克服困难。而高级数据科学家有足够的经验,能够把事情做好。即使这包括聘请专家或研究人员,他们也知道完成一个项目需要什么。
如果你正在寻找一份高级工作,问问自己 "别人可以让我独自完成/处理一项任务而不检查多久"。你必须对自己完全诚实,否则你将为自己的失败埋下隐患。我并不是说你不能设定目标,不能努力成为最伟大的人。我是说对你目前的经验水平要现实,以帮助你找到正确的角色,并在此基础上不断发展。
如何从初级到中级到高级?
这是一年的开始,我们都在记下我们的计划;与职业或个人有关。我们都在努力实现我们今年的目标。对于所有的数据科学家来说,这里有一些建议,告诉你如何在事业上取得进展,在阶梯上攀升,增加你的收入。
独立性
反思一下 "你能让一个人独自完成/处理一项任务而不检查的时间有多长?"这个问题,这都是基于独立的态度。由于缺乏经验和技能,年轻人往往会问更多的问题,而老年人有能力根据过去的经验做出决定。
这不应该吓到你,让你不敢问问题。问问题没有错,这是你学习的方式。如果你不犯错误,你就不需要经历学习过程,你将永远停滞不前。然而,不要每次都依赖你的同事和高级职员来指导你。当你有问题时,避免直接去找他们,试着自己去想办法。当你明白如何解决这个问题时,你会有一种成就感。如果你不确定你的解决方案,请询问你的经理的意见。他们会感谢你带着解决方案来找他们,而不仅仅是一个问题。
让自己处于不舒服的位置
当你在阴沟里的时候,许多伟大的事情发生了。你把自己从一个不舒服的、不熟悉的洞里爬出来。初中生通常从事较容易的工作,有时非常重复和无聊。如果你觉得自己已经准备好了,就向你的经理提出更具挑战性的任务,以学习和增长你的分析能力。
如果你成功地完成了任务,你的经理或高级数据科学家会认识到这一点,并为你推动晋升。
开始像高级人员那样思考
高级数据科学家可以单独处理任务,这不仅是因为他们的经验水平,而且还因为他们对企业目标的理解。大多数初级数据科学家的任务是孤立的,完成任务的过程不会比它是一个请求更进一步。通过更好地掌握企业的短期和长期目标,能够放眼全局,这将改善你在处理请求或试图解决一个问题时的思维方式。
高级数据科学家不仅根据他们的经验,而且还根据公司的需求做出决定,以帮助公司发展。学习高级数据科学家如何通过结对编程、每周团队建设或1-1的方式来接近和处理问题,将使你进入高级数据科学家的思维模式。
沟通与管理
这些是中级或高级数据科学家的主要软技能,因为他们会经常被要求提供建议、指导和帮助理解一个问题。除了数据团队的其他成员和他们的经理之外,许多初级数据科学家并不需要与许多同事交谈。
作为一名高级数据科学家,能够管理一个数据团队需要良好的沟通和管理技能,以确保业务的顺利进行。如果由高级数据科学家管理的项目出现问题,无论任务是否由他/她完成;他们仍然要承担责任。高级数据科学家应该提高警惕,在错误呈现给利益相关者之前,找出错误。
如果高级人员缺乏沟通,他/她的操作就会崩溃,很快就会意识到由于他们的无能,工作量会落到他们身上。与其要向利益相关者解释为什么输出是错误的,或者为什么做出了错误的决定,不如与你的数据团队进行管理和沟通以避免这些问题才是更好的解决办法。
反馈
“反馈是冠军的早餐。”
-Ken Blanchard
询问反馈是你自我提升的健康催化剂;无论是个人还是与职业相关的。向你的经理询问你的长处和短处,将帮助你了解什么对你有用,什么你需要改进。没有人是完美的,我们总是有办法让自己变得更好。优秀的球员希望被告知真相,因为他们想继续赢下去!"。
我希望这篇文章能帮助你了解你所处的水平,以及你需要做什么来达到下一个水平。我祝愿你在你的旅程中一切顺利!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30