When looking at data scientist salaries and data science roles, it became obvious that there are different, more specific facets within data science. These facets relate to unique job positions, specifically, machine learning operations, NLP, data engineering, and data science itself. Of course, there are even more specific positions than these, but these can give you a general summary of what to expect if you land a job in one of these positions. I wanted to pick these four roles, too, because they can be separated well, almost as if it was there was a clustering algorithm that found jobs that were the most different between one another but that were also in the same population. Below, I will be discussing the average base pay with a low and high range, as well as respective seniority levels, the number of estimates used to determine these numbers, and expected skills and experiences for each role.
机器学习工程师倾向于将已经研究和构建的数据科学模型应用到生产环境中,通常包括软件工程和机器学习算法知识。话虽如此,你可以想象得到相当不错的薪水。这个特别的估计来自于GlassDoor[3]。
根据大约1900提交的工资,有以下广泛的范围:
正如你所看到的,这是一个范围,就像任何职位一样,你的经验越多,工资越高也就不足为奇了。除了多年的经验,你工作的州,你雇用的技能,公司也会努力创造最终的工资数额--所有这些职位都是如此。为了获得更多的粒度,我们可以查看不同的资历级别,以便了解级别的增加与工资数额的关系:
以下是一些来自个人经验的技能,您可以期望在机器学习职位上使用:
通常被称为NLP工程师,这个角色通常专注于将数据科学模型或机器学习算法应用于文本数据。NLP工作的一些例子是主题建模、大量文本、语义分析和chatbot代理。话虽如此,你也可以想象出相当不错的工资--然而,这个工资细目将低于机器学习工程师,很可能是因为这个角色不太包容,更专注于数据科学中的特定主题。这个特别的估计也来自于Glassdoor[5]。
根据大约20提交的工资,有以下广泛的范围:
值得注意的是,报告的工资数额相当低,所以对这个范围持怀疑态度,但尽管如此,对这个工资仍然有很高的信心。
所有这些数量都低于机器学习,然而,与大多数其他角色相比,它们仍然相当高。
以下是一些来自个人经验的技能,你可以期望在自然语言处理工程师的职位上使用:
也许一个更常见的角色是数据工程,它与数据科学比在数据科学之下更相关。然而,这个角色对数据科学工作来说仍然至关重要,有时,数据科学家可以期望知道数据工程师所知道的大部分内容,所以我将在本文分析中包括它。数据工程的一些示例包括创建存储最终用于数据科学模型的数据的ETL作业,以及自动存储模型结果和执行查询优化。这个特别的估计也来自于Glassdoor[7]。
根据大约~6,800提交的工资,有以下广泛的范围:
这个范围更类似于自然语言处理工程师的角色,然而,它可能与日常工作中的实际工作角色相距最远。同样重要的是要注意,这个职位涉及到相当多的估计。
以下是一些来自个人经验的技能,您可以期望在数据工程师职位上使用:
最后,但并非最不重要的,是数据科学家的角色。虽然这个角色看起来是最一般的,但实际上也可以是具体的,通常主要由模型构建过程组成--有时需要数据工程和机器学习工程师操作,但可能性较小--但仍然可能涉及自然语言处理方面的专业(通常如果重点是NLP,那么数据科学家将以此为标题--但不是一直)。这个角色还可以有更多的可变性,所以我们也可以期待一个广泛的范围。这个特别的估计也来自于Glassdoor[9]。
根据大约~16,200提交的工资,有以下广泛的范围:
出人意料地低于预期,这一角色在本分析中的大多数其他角色附近。话虽如此,它可能是对离群值最真实和稳健的,因为它是迄今为止提交来组成这些工资数额的最多的工资数额。
以下是一些来自个人经验的技能,您可以期望在数据科学职位上使用:
While these roles can have several similarities and differences, the same can be said about their salary ranges. Nearly three of the four salaries were similar, with one standing out. That role was machine learning engineer —why is that?My understanding is that this role requires a knowledge of most data science concepts, and especially their output, as well the software engineering involved around deployment — that is a lot to know and employ, so it makes sense why a role that composes both software engineering and data science pays so well. In addition to the salary breakdown of each data science role — or similar to data science in some way, were the skills that you can expect to employ, so that you can have a better idea of the role and how that relates to the salary amount.
总结一下,以下是我们分析的四个职位,以及你可以期望使用的技能:
我希望你觉得我的文章既有趣又有用。如果你同意这些数字和范围,请随时在下面发表评论--为什么或为什么不?你认为有一个角色,尤其是,离现实如此之远吗?你还能想到哪些数据科学角色会有不同的工资细分吗?一个角色的其他因素会影响薪水吗?
这些薪金是在美国报告的,因此它们是以美元数额计算的。我与这些公司中的任何一家都没有关联。
请随时查看我的个人资料和其他文章,并在LinkedIn上联系我。
[1] Photo byThought CatalogonUnsplash, (2018)
[2]Photo Byassed PhotographyonUnsplash,(2018)
[3]Glassdoor,Inc.,机器学习工程师工资,(2008-2021)
[4]Photo Bybatrick TomassoonUnsplash,(2016)
[5]Glassdoor,Inc.自然语言处理工程师工资,(2008-2021)
[6]Caspar Camille RubinonUnsplash的照片,(2017)
[7]Glassdoor,Inc.,数据工程师工资,(2008-2021)
[8]照片byDaria NepriakhinaonUnsplash,(2017)
[9]Glassdoor,Inc.,数据科学家工资,(2008-2021)
Bio: Matthew Przybyla is Senior 数据科学家 at Favor Delivery, and a freelance technical writer, especially in data science.
原创。经允许转发。
相关:
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10