在过去的五年里,当python编程成为潮流时,我一直在数据科学领域工作。当时,在2016年,神经网络和深度学习只是一些时髦的词。当时有一场关于谷歌自动驾驶汽车和强化学习的炒作。但是,大多数数据科学爱好者甚至不知道神经网络的工作。
2021年的今天,大多数公司都在采用数据科学战略,通过自动化不同的场景,用一名数据科学家取代几十名IT人员,从而获得更多收入,这些数据科学家可以使用各种自动化工具,如BluePrism、UI Path、Python和机器学习算法,自动化这些IT人员的任务。
这就是为什么我们大多数人都在努力学习python,机器学习,分析,深度学习。为什么?因为数据科学家在行业中有极好的价值。而且,在数据科学领域,人们的工作数据也有了很大的增长。
但是,你知道在今天,这些“自动化任务正在使用另一种自动化策略来自动化吗?”整个数据科学管道正在使用一个单一的工具来自动化。
在2019年,数据科学家过去需要花费数天时间进行数据收集、数据清洗、特征选择,但现在我们在市场上有很多工具可以在几分钟内完成这些工作。
另一方面,我们尝试了不同的机器学习库,如logistic回归、随机森林、boosting machines、朴素贝叶斯和其他数据科学库来建立更好的模型。
但是,今天,我们有像H2O、PyCaret和许多其他云提供商这样的工具,他们可以使用其他30-50个机器学习库的组合对相同的数据进行相同的模型选择,为您的数据提供最佳的机器学习算法,并且误差最小。
现在情况正在以快速的速度发生变化。而且,我们无论如何都在失去我们的价值,因为每个人都会相信这个工具,它尝试了20多个机器学习算法,结果比我们更准确,而我们只尝试了几个机器学习库,结果却不太准确。
到目前为止,我们已经讨论了一些自动化工具是如何在机器学习领域做得很好的。这些工具做得比我们好,因为我们使用的机器学习算法知识有限。相反,这些工具使用库的组合,通过自动化完整的EDA过程来获得更有效的结果,从而在更短的时间内提供最好的结果。
但是,在深度学习领域,我们比机器学习领域拥有更少的命令,并且处理能力有限。我们也有大量的工具在市场上。这些工具在拥有最好的处理器方面投入了大量资金。
当我们谈论深度学习时,它以处理非结构化数据而闻名。而且,95%的时间,我们在这里处理图像和测试数据。目标检测、图像分割、构建聊天机器人、情感分析、文档相似度都是著名的用例。
但是,处理这些用例需要了解不同的深度学习算法,如卷积神经网络、递归神经网络、U-Net、沙漏、YOLO,以及更多需要大量处理能力来处理更多数据以获得更高精度的模型。
这里的问题是,在2021年的今天,公司正在投资大量资金来自动化这些完整的管道工作流。而且,我们忙于理解基本的机器学习和深度学习模型,而不顾没有任何投资者我们买不起高端机器的事实。
每个公司都意识到了这一事实,所以五年后,当这些云支持的数据科学工具将变得更加高效,并能够在更短的时间内提供更好的准确性时,为什么公司会投资雇佣我们,而不购买这些工具的订阅?
当所有这些事情都将自动化时,您可能会考虑数据科学爱好者的未来。会有工作短缺还是会有更少的招聘?
好吧,当我们换位思考时,事情就变得容易了。诚然,公司将继续专注于机器学习的自动化工作流程。但是,请记住,没有一家公司愿意依赖于另一家公司的工作。
每个公司的目标是建立他们的产品,这样他们就可以建立自己的自动化系统,然后在市场上销售,以赚取更多的收入,而不是依赖他人。所以,是的,将需要数据科学家,他们可以帮助行业建立自动化系统,可以自动化机器学习和深度学习的任务。
最后,我们可以说,数据科学家的角色将是以优化的结果自动化流水线。因此,我们最终将机器学习工作流的流水线自动化,并让自动化决定数据中的最佳特征,并使用最佳策略的算法得到可能的最佳结果。
我们已经看到,在未来五年里,数据科学工作岗位将会短缺,因为公司将采用数据科学的自动化管道。但是,对能够自动化数据科学管道的数据科学家也将有很高的需求。
按照我的想法,要使这些管道自动化,我们首先需要理解机器学习算法,以建立一个更好的自动化系统,这最终将导致更多的工作。
嗯,你有什么想法?我很想听听你的。我希望你喜欢这篇文章。联系更多相关文章。我发表关于实时数据科学场景及其用例的文章。
谢谢你的阅读!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30