如果你是一个书呆子般的数据科学家,想要开始作为一个独立(远程)自由数据科学家工作,这篇文章是为你准备的。从现在朝九晚五的工作过渡到远程自由职业是一种解放的经历。最终收益是巨大的,包括:
我叫保·拉巴塔·巴约。我是一个自由数据科学家和ML工程师谁作为一个远程自由职业者在过去2年以上的工作。之前,我曾在一家顶级移动游戏公司Nordeus担任数据科学家。在我周围,我有一群伟大的数据科学家和了不起的数据工程师。当我加入这个团队的时候,他们已经在内部建立了数据分析平台,帮助公司管理一个每天活跃用户超过200万的游戏。我觉得我是另一只在一个成熟的蜂群中运作的蜜蜂。我90%的时间都花在技术上,包括数据分析以改进产品和ML开发以提高效率。10%的时间用于与团队其他成员交流我正在做的事情。
对于像我们这样的书呆子、数据科学家和ML怪人来说,这种分裂感觉很棒。然而,这种舒适有一个代价,我在两个不断的想法中想到了
最终,我辞去了工作,开始从事远程自由数据科学家的工作。这一转变既具有挑战性,也令人难以置信地丰富。在此过程中,我收集了一些知识,并将其浓缩为4个实用技巧,以帮助您加入我的行列,并开始走在另一边。
你的第一个问题是:我在哪里找到我的第一个项目?
互联网上有大量与数据相关的工作。如果你访问像Upwork这样的网站,你可以看到每分钟都有新的职位发布。是的,有很多数据科学工作,这是你每天早上都应该感谢的事情。然而,在那些巨大的网站上也有很多竞争。来自世界各地的自由职业者试图和你在同一个池塘里钓鱼。
你可能会想:
“考虑到我的技能和生活成本,让我们设定一个比我认为合理的低的工资,以增加我找到第一份工作的机会。”
大错。顺便说一句,我犯了两次这个错误。在我的第二个自由职业项目中,我和同一时区的另一位数据工程师一起工作,他的工资是我的两倍多。他第一次做自由职业。无数次我后悔我的聪明的定价。
大多数客户愿意支付更高的费率以减少项目的不确定性。你是一个非常合格的工作,过度的价格折扣也被解释为项目成功的更高的不确定性。此外,请记住,你试图说服另一个人,而不是成本最小化的Android。你需要表现出自信,设定一个比你认为自己价值更低的价格与此相反。
如今,有很多自由职业平台。我已经使用了其中的3个(Upwork,Toptal和Braintrust),但也可以随意探索其他的。
这些平台可分为两类:
大多数客户不是寻找一个全面的数据科学家,而是寻找一个可以解决他们问题的特定配置文件。一个非常了解如何
试图把自己表现为无所不能的终极自由数据科学家是很有诱惑力的,但这不是客户想要的。此外,数据科学是一个巨大的市场。通过缩小你的侧写,你仍然在一个相当大的池塘里钓鱼。记住这一点。
我的第一份自由职业可以粗略地描述为“我们的数据工程师没有一个能在Tableau中构建一个漂亮的仪表板。你能吗?“。这不是我能想到的最令人兴奋的工作,但这是我在以前的工作中做过一千次的事情。我是这方面的专家,这是对客户有价值的。
从专注于你已经是专家的项目开始你的道路。避免冒名顶替综合症,赢得你的第一张支票,建立信心。
兼职工作,甚至每小时工作,你可以学到和以前朝九晚五一样的东西。利用这个机会,在额外的时间里学习新的技能,为下一份合同中你想要工作的下一个领域做准备。
一个典型的错误是这样开始一个提案:
“亲爱的X。我叫Y,是一名数据科学家,在a、B、C和D领域有N年的经验。我有E方面的背景,而且……”
当然可以。你的潜在客户想知道你不可思议的背景。但她不是你爸妈。他想解决这个问题,所以直奔主题。从第一段开始专注于问题,没有序言和只能让她打哈欠的陈述。使用项目符号来列举与问题直接相关的非常具体的事情,并减少认知负荷。还有,把BS控制在最小。你喜欢读别人如何赞美自己吗?你的潜在客户也一样。
自从我开始做自由职业以来,我一直保留着我写的每一份提案。所有为我赢得工作的提案都有这样的结构:
“嗨X!我的名字是Y,最近我构建了N个与您的问题Z直接相关的东西:
我很乐意帮你做这件事。让我们本周打个电话来了解细节。最佳,Y.“
作为一名数据科学家的自由远程工作在智力和经济上都是令人难以置信的回报。如果这些建议能在你的自由职业道路上帮助你,我会感到非常高兴。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20