作者:小伍哥
来源:小伍哥聊风控
上次分享了非常牛逼的不需要介质就能进行团伙挖掘的算法,大家都说是个好算法,但是实现细节还是有些问题。
由此可见,风控的实践大于算法,就像绘画,给我同样的材料,打死我都成不了梵高。所以风控一定要多看多试验。我这里用一个简单的数据集,具体的把实现过程分享出来,并图解每一步的原理,希望对大家有帮助。
一、梳理已有或者想应用的场景
首先需要梳理满足该算法数据条件的场景,最少的条件就是:用户+时间戳。举例一些具体的场景,大家感官更明显。
用户下单环节(A、B用户多天总是在较短的时间内购买商家A,然后是商家B)
- 用户A 2021-11-16 21:22:02 商家A
- 用户B 2021-11-16 21:32:02 商家A
- 用户A 2021-11-18 11:18:02 商家B
- 用户B 2021-11-18 11:54:01 商家B
某个领券环节(A、B用户多天总是在较短的时间内去领券)
- 用户A 2021-11-16 21:22:02 活动A
- 用户B 2021-11-16 21:32:02 活动A
- 用户A 2021-11-18 11:18:02 活动B
- 用户B 2021-11-18 11:54:01 活动B
还有更多的环节,都可能存在这种同步行为
电商的评价环节
拼多多的砍价活动
抖音的点赞/关注
微信的投票
上述一系列的活动,存在一些利益群体,控制大量的账号,并且在不同的时间,同时去完成上述的任务,则可能存在同步行为,我们就可以构建图网络,把他们一网打尽。
我们本次使用评价数据进行讲解,数据格式如下
二、数据处理环节
面对大规模的数据,我一般都是按场景-天进行拆分,然后天-场景进行合并,最后得出一个更大规模的图。可以多场景日志数据聚合到一起进行挖掘,也可以单一场景计算完了在聚合,我建议第二种方法,计算量更小,并且算完一个场景就能够落地应用了,项目时间不会太长。
最难处理的就是时间差这个环节,下面我们开始:
1、首先我们需要做的就是把时间离散化(我按小时计算)
具体的就是以当前小时为中心,向前一小时,向后一小,我写了函数,可以直接使用。如下的例子。0点分为了(23,0)(0,1),23为前一天的。
2021-11-16 00:03:32
20211115(23#00) 20211116(00#01)
函数写好了后,对每个时间应用。
import datetime
def Time2Str(tsm):
t1 = datetime.datetime.fromisoformat(tsm)
t0 = t1-datetime.timedelta(days=0, hours=1)
t2 = t1+datetime.timedelta(days=0, hours=1)
str1 = t0.strftime("%Y%m%d")+'(' +str(t0.hour).rjust(2,'0')+'#'+str(t1.hour).rjust(2,'0')+')'
str2 = t1.strftime("%Y%m%d")+'(' +str(t1.hour).rjust(2,'0')+'#'+str(t2.hour).rjust(2,'0')+')'
return str1+';'+str2
Time2Str('2021-11-16 15:51:39')#测试下
'20211116(14#15);20211116(15#16)'
我们把上面的数据系统化,后面的案例好用
import pandas as pd
df = pd.DataFrame({
'Buy':['BUY_03','BUY_02','BUY_01','BUY_04','BUY_03','BUY_02','BUY_01','BUY_04'],
'Times':['2021-11-16 00:03:32','2021-11-16 00:12:23','2021-11-16 00:22:07','2021-11-16 21:10:24',
'2021-11-16 21:18:05','2021-11-16 21:22:02','2021-11-16 21:42:57','2021-11-16 23:51:39'],
'Seller':['Y','Y','Y','E','E','E','E','Y']
# 时间离散化
df['tsm'] = df['Times'].apply(Time2Str)
2、对数据进行裂变,一行变两行,这一步是关键,需要重点理解
离散化以后,需要一行变多行,为的就是同一个小时内的两个对象能够匹配,一行变多行的代码如下。SQL的话,也是对应的函数的,比Pandas简单很多
df = df.set_index(["Buy", "Times",'Seller'])["tsm"].str.split(";", expand=True)
.stack().reset_index(drop=True, level=-1).reset_index().rename(columns={0: "tsm"})
print(df)
3、数据表进行自我匹配,并还需要作差,时间限定小于自己的阈值
对于变完之后的数据,进行匹配,加了时间约束和商家约束,['Seller','tsm'],当然你也可以只加时间约束,不加商家约束。约束计算完了,还需要进一步计算,其实匹配完的是2小时内的,还需要作差计算一小时内的,不满足条件的排除,并且把自己和自己匹配的也要排除,没啥意义。计算完了得到下面的结果。
df_0 = pd.merge(df,df,on =['Seller','tsm'],how='inner')
df_1 = df_0[df_0['Buy_x']!=df_0['Buy_y']]
df_1['diff'] = (pd.to_datetime(df_0['Times_x'])-
pd.to_datetime(df_0['Times_y'])).dt.seconds/3600/24
4、一天的数据聚合就得到下面的结果了
匹配得到的是明细数据,还需要进行聚合,得到两个用户相交的次数,就可以得到再当天的一个关联情况了。如下图所示:
# 数据聚合
df_1.groupby(['Buy_x','Buy_y']).agg({'Seller': pd.Series.nunique}).reset_index()
5、多天的数据聚合
多天数据进行聚合,假如我们的阈值是大于2,那标黄的部分,就将被舍弃掉
6、总体相似度计算
聚合了,还要进行相似度计算,分别计算每个用户出现的总次数。为什么要计算这个呢,举一个极端的例子,假如用户A自己出现了一万次,与B共同出现了5次,那这可能是巧合,但是如果A总共出现了5次,且5次都和B出现,那他俩是团伙的概率要大很多。
按上面的数据,我们还要单独计算X出现的次数,Y出现的次数,并且X+Y-X∩Y求出并集,就可以用杰卡德算法进行相似度计算了,把相似度低的排除即可
到此计算完了之后,就可以构图环节就算完成了,下一步是如何进行分群,我们这里采用LPA标签传播算法就可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-25在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口 ...
2025-02-25春风拂面,金三银四的求职季如期而至。谁都想在这场竞争里拿下心仪offer。 一份亮眼简历是求职敲门砖,面试紧张则可能让机会溜 ...
2025-02-24当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17