作者:俊欣
来源:关于数据分析与可视化
今天我们来聊一下Pandas当中的数据集中带有多重索引的数据分析实战
通常我们接触比较多的是单层索引(左图),而多级索引也就意味着数据集当中的行索引有多个层级(右图),具体的如下图所示
AUTUMN
我们先导入数据与pandas模块。
import pandas as pd ## 导入数据集 df = pd.read_csv('dataset.csv')
df.head()
output
该数据集描述的是英国部分城市在2019年7月1日至7月4日期间的全天天气状况,我们先来看一下当前的数据集的行索引有哪些?代码如下
df.index.names
output
FrozenList(['City', 'Date'])
数据集当中City、Date,这里的City我们可以当作是第一层级索引,而Date则是第二层级索引。
我们也可以通过调用sort_index()方法来按照数据集的行索引来进行排序,代码如下
df_1 = df.sort_index() df_1
output
要是我们想将这个多层索引去除掉,就调用reset_index()方法,代码如下
df.reset_index()
下面我们就开始针对多层索引来对数据集进行一些分析的实战吧
在pandas当中数据筛选的方法,一般我们是调用loc以及iloc方法,同样地,在多层级索引的数据集当中数据的筛选也是调用该两种方法,例如筛选出伦敦白天的天气状况如何,代码如下
df_1.loc['London' , 'Day']
output
要是我们想针对所有的行,就可以这么来做
df_1.loc[:, 'Day']
output
同理针对所有的列,就可以这么来做
df_1.loc['London' , :]
output
要是我们想看伦敦2019年7月1日白天的天气状况,就可以这么来做
df.loc['London', 'Day'].loc['2019-07-01']
output
Weather Shower Wind SW 16 mph Max Temperature 28 Name: 2019-07-01, dtype: object
这里我们进行了两次数据筛选的操作,先是df.loc['London', 'Day'],然后再此的基础之上再进行loc['2019-07-01']操作,当然还有更加方便的步骤,代码如下
df.loc[('London', '2019-07-01'), 'Day']
output
Weather Shower Wind SW 16 mph Max Temperature 28 Name: 2019-07-01, dtype: object
除此之外我们要是想看一下伦敦2019年7月1日和7月2日两天白天的天气情况,就可以这么来做
df.loc[
('London' , ['2019-07-01','2019-07-02'] ) , 'Day' ]
output
在此基础之上,我们想要看天气和风速这两列,我们也可以单独摘出来,代码如下
df.loc[ 'London' ,
('Day', ['Weather', 'Wind'])
]
output
对于第一层级的索引而言,我们同样还是调用loc方法来实现
df.loc[ 'Cambridge':'Oxford', 'Day' ]
output
但是对于第二层级的索引,要是用同样的方式来用就会报错,
df.loc[
('London', '2019-07-01': '2019-07-03'), 'Day' ]
output
SyntaxError: invalid syntax (<ipython-input-22-176180497f92>, line 3)
正确的写法代码如下
df.loc[
('London','2019-07-01'):('London','2019-07-03'), 'Day' ]
output
对于单层索引而言,我们通过:来筛选出所有的内容,但是在多层级的索引上面则并不适用,
# 出现语法错误 df.loc[
('London', :), 'Day' ] # 出现语法错误 df.loc[
(: , '2019-07-04'), 'Day' ]
正确的做法如下所示
# 筛选出伦敦下面所有天数的白天天气情况 df.loc[
('London', slice(None)), 'Day' ]
output
# 筛选出2019年7月4日下所有城市的白天天气情况 df.loc[
(slice(None) , '2019-07-04'), 'Day' ]
output
当然这里还有更加简便的方法,我们通过调用pandas当中IndexSlice函数来实现,代码如下
from pandas import IndexSlice as idx
df.loc[
idx[: , '2019-07-04'], 'Day' ]
output
又或者是
rows = idx[: , '2019-07-01']
cols = idx['Day' , ['Max Temperature','Weather']]
df.loc[rows, cols]
output
对于多层级索引的数据集而言,调用xs()方法能够更加方便地进行数据的筛选,例如我们想要筛选出日期是2019年7月4日的所有数据,代码如下
df.xs('2019-07-04', level='Date')
output
我们需要在level参数上指定是哪个标签,例如我们想要筛选出伦敦2019年7月4日全天的天气情况,代码如下
df.xs(('London', '2019-07-04'), level=['City','Date'])
output
最后xs方法可以和上面提到的IndexSlice函数联用,针对多层级的数据集来进行数据的筛选,例如我们想要筛选出2019年7月2日至7月4日,伦敦全天的天气状况,代码如下
rows= (
idx['2019-07-02':'2019-07-04'], 'London' )
df.xs(
rows ,
level = ['Date','City']
)
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31