作者:俊欣
来源:关于数据分析与可视化
今天我们来聊一下Pandas当中的数据集中带有多重索引的数据分析实战
通常我们接触比较多的是单层索引(左图),而多级索引也就意味着数据集当中的行索引有多个层级(右图),具体的如下图所示
AUTUMN
我们先导入数据与pandas模块。
import pandas as pd ## 导入数据集 df = pd.read_csv('dataset.csv')
df.head()
output
该数据集描述的是英国部分城市在2019年7月1日至7月4日期间的全天天气状况,我们先来看一下当前的数据集的行索引有哪些?代码如下
df.index.names
output
FrozenList(['City', 'Date'])
数据集当中City、Date,这里的City我们可以当作是第一层级索引,而Date则是第二层级索引。
我们也可以通过调用sort_index()方法来按照数据集的行索引来进行排序,代码如下
df_1 = df.sort_index() df_1
output
要是我们想将这个多层索引去除掉,就调用reset_index()方法,代码如下
df.reset_index()
下面我们就开始针对多层索引来对数据集进行一些分析的实战吧
在pandas当中数据筛选的方法,一般我们是调用loc以及iloc方法,同样地,在多层级索引的数据集当中数据的筛选也是调用该两种方法,例如筛选出伦敦白天的天气状况如何,代码如下
df_1.loc['London' , 'Day']
output
要是我们想针对所有的行,就可以这么来做
df_1.loc[:, 'Day']
output
同理针对所有的列,就可以这么来做
df_1.loc['London' , :]
output
要是我们想看伦敦2019年7月1日白天的天气状况,就可以这么来做
df.loc['London', 'Day'].loc['2019-07-01']
output
Weather Shower Wind SW 16 mph Max Temperature 28 Name: 2019-07-01, dtype: object
这里我们进行了两次数据筛选的操作,先是df.loc['London', 'Day'],然后再此的基础之上再进行loc['2019-07-01']操作,当然还有更加方便的步骤,代码如下
df.loc[('London', '2019-07-01'), 'Day']
output
Weather Shower Wind SW 16 mph Max Temperature 28 Name: 2019-07-01, dtype: object
除此之外我们要是想看一下伦敦2019年7月1日和7月2日两天白天的天气情况,就可以这么来做
df.loc[
('London' , ['2019-07-01','2019-07-02'] ) , 'Day' ]
output
在此基础之上,我们想要看天气和风速这两列,我们也可以单独摘出来,代码如下
df.loc[ 'London' ,
('Day', ['Weather', 'Wind'])
]
output
对于第一层级的索引而言,我们同样还是调用loc方法来实现
df.loc[ 'Cambridge':'Oxford', 'Day' ]
output
但是对于第二层级的索引,要是用同样的方式来用就会报错,
df.loc[
('London', '2019-07-01': '2019-07-03'), 'Day' ]
output
SyntaxError: invalid syntax (<ipython-input-22-176180497f92>, line 3)
正确的写法代码如下
df.loc[
('London','2019-07-01'):('London','2019-07-03'), 'Day' ]
output
对于单层索引而言,我们通过:来筛选出所有的内容,但是在多层级的索引上面则并不适用,
# 出现语法错误 df.loc[
('London', :), 'Day' ] # 出现语法错误 df.loc[
(: , '2019-07-04'), 'Day' ]
正确的做法如下所示
# 筛选出伦敦下面所有天数的白天天气情况 df.loc[
('London', slice(None)), 'Day' ]
output
# 筛选出2019年7月4日下所有城市的白天天气情况 df.loc[
(slice(None) , '2019-07-04'), 'Day' ]
output
当然这里还有更加简便的方法,我们通过调用pandas当中IndexSlice函数来实现,代码如下
from pandas import IndexSlice as idx
df.loc[
idx[: , '2019-07-04'], 'Day' ]
output
又或者是
rows = idx[: , '2019-07-01']
cols = idx['Day' , ['Max Temperature','Weather']]
df.loc[rows, cols]
output
对于多层级索引的数据集而言,调用xs()方法能够更加方便地进行数据的筛选,例如我们想要筛选出日期是2019年7月4日的所有数据,代码如下
df.xs('2019-07-04', level='Date')
output
我们需要在level参数上指定是哪个标签,例如我们想要筛选出伦敦2019年7月4日全天的天气情况,代码如下
df.xs(('London', '2019-07-04'), level=['City','Date'])
output
最后xs方法可以和上面提到的IndexSlice函数联用,针对多层级的数据集来进行数据的筛选,例如我们想要筛选出2019年7月2日至7月4日,伦敦全天的天气状况,代码如下
rows= (
idx['2019-07-02':'2019-07-04'], 'London' )
df.xs(
rows ,
level = ['Date','City']
)
output
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16