作者:小伍哥
来源:小伍哥聊风控
对于文本处理,tf-idf的使用已经非常普遍,在sklearn等知名的机器学习开源库中都提供了直接的调用,然而很多人并没有搞清楚TF-IDF是怎么算出来的,也就无法对这种计算方法进行针对性的改进了。我之前也是稀里糊涂的,在各种开源库随手可得的Python年代“调包需谨慎”,不能让自己成为只会调包的人,我们内功还是需要修炼的,计算之前,我们先了解下tf-idf的基本定义。
tf(term frequency:指的是某一个给定的词语在该文件中出现的次数,这个数字通常会被归一化(一般是词频除以该文件总词数),以防止它偏向长的文件。
idf (inverse document frequency):反应了一个词在所有文本(整个文档)中出现的频率,如果一个词在很多的文本中出现,那么它的idf值应该低,而反过来如果一个词在比较少的文本中出现,那么它的idf值应该高。
一个词语的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。
下面我们看看大多数情况下,tf-idf 的定义:
TF的计算公式如下:
其中
是在某一文本中词条w出现的次数,
是该文本总词条数。
IDF的计算公式:
其中Y是语料库的文档总数,Yw是包含词条w的文档数,分母加一是为了避免
未出现在任何文档中从而导致分母为
的情况。
TF-IDF的就是将TF和IDF相乘
从以上计算公式便可以看出,某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语。
现在我们来看看,tf-idf到底怎么计算的,和我们手算的能不能对上。
在sklearn中,tf与上述定义一致,我们看看idf在sklearn中的定义,可以看到,分子分母都加了1,做了更多的平滑处理
smooth_idf=False
idf(t) = log [ n / df(t) ] + 1
smooth_idf=True
idf(t) = log [ (1 + n) / (1 + df(t)) ] + 1
下面我们手把手的计算出TF-IDF的值,使用的是sklearn官方的案例:
corpus = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?'] #初始化 vector = TfidfVectorizer() #tf-idf计算 tfidf = vector.fit_transform(corpus) #直接打印,得到的是一个稀疏矩阵,第1位表示文档编号,第二位代表词的编号 print(tfidf) (0, 1) 0.46979138557992045 (0, 2) 0.5802858236844359 (0, 6) 0.38408524091481483 (0, 3) 0.38408524091481483 (0, 8) 0.38408524091481483 (1, 5) 0.5386476208856763 (1, 1) 0.6876235979836938 (1, 6) 0.281088674033753 (1, 3) 0.281088674033753 (1, 8) 0.281088674033753 (2, 4) 0.511848512707169 (2, 7) 0.511848512707169 (2, 0) 0.511848512707169 (2, 6) 0.267103787642168 (2, 3) 0.267103787642168 (2, 8) 0.267103787642168 (3, 1) 0.46979138557992045 (3, 2) 0.5802858236844359 (3, 6) 0.38408524091481483 (3, 3) 0.38408524091481483 (3, 8) 0.38408524091481483
通过vocabulary_属性,可以查看每个词对应的数字编号,就可以与上面的矩阵对应起来了
vector.vocabulary_ {'this': 8, 'is': 3, 'the': 6, 'first': 2, 'document': 1, 'second': 5, 'and': 0, 'third': 7, 'one': 4}
通过上面的字典和矩阵可以知道,第一个文档'This is the first document'的tf-idf 值如下
(0, 1) 0.46979138557992045 document (0, 2) 0.58028582368443590 first (0, 6) 0.38408524091481483 the (0, 3) 0.38408524091481483 is (0, 8) 0.38408524091481483 this
document first the is this
0.46979 0.58028 0.384085 0.38408 0.384085
我们手动计算来验证下:
tf 计算
对于第一个文档,有5个不同的词,每个词的词频为:tf= 1/5
idf计算
document:log((1+N)/(1+N(document)))+1= log((1+4)/(1+3))+1 = 1.2231435 first :log((1+N)/(1+N(first)))+1 = log((1+4)/(1+2))+1 = 1.5108256 the :log((1+N)/(1+N(the )))+1 = log((1+4)/(1+4))+1 = 1.0 is :log((1+N)/(1+N(is )))+1 = log((1+4)/(1+4))+1 = 1.0 this :log((1+N)/(1+N(this)))+1 = log((1+4)/(1+4))+1 = 1.0
tf-idf计算
1.2231435*1/5 = 0.24462869 1.5108256*1/5 = 0.30216512 1.0*1/5 = 0.2 1.0*1/5 = 0.2 1.0*1/5 = 0.2
得到我们手工计算的tf-idf值
和我们sklearn计算的
答案并不对,哪里出了问题呢?我们仔细看看原来的代码,因为sklearn做了归一化,我们按同样的方法进行归一化计算如下:
计算每个tf-idf 的平方根
(0.24462869**2 + 0.30216512**2 + 0.2**2 + 0.2**2 + 0.2**2)**0.5 = 0.5207177313
对每个值除以平方根
0.24462869/0.5207177313244965 = 0.4697913577434035 0.30216512/0.5207177313244965 = 0.5802858282382923 0.20000000/0.5207177313244965 = 0.3840852499708055 0.20000000/0.5207177313244965 = 0.3840852499708055 0.20000000/0.5207177313244965 = 0.3840852499708055
这样一看,就和我们的sklearn计算的一致了,到此,我们也算是学会了计算tf-idf值了,加深了对该方法的理解,以便于后期的算法调用,心里有货,才不惧未知。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16