
作者:小伍哥
来源:小伍哥聊风控
大家好,我是小伍哥,今天跟大家聊个比较深入点的话题,技术好就能做好风控么?
风控算法或风控策略,确实需要很深、很广泛的技术储备,但是也需要很高的应用艺术和想象力。风控不像其他业务技术或算法,算法的出现本身就有了比较确定性的场景了,比如推荐,直接套用就行,但是很多算法在风控领域应用的时候,场景需要自己去挖掘和发现。
怎么抽象场景,怎么使用算法,就是一个艺术活了。下面用一个图异常检测算法的一个点举例说明。算法链接:OddBall-图异常点检测
这篇文章,我相信很多读者看到是图算法,基本就放弃,认为需要要自己写很复杂的算法才能部署和实现,其实对这个算法充分理解后,简单的统计就能用了,难点在于对算法的理解,以及对业务中场景的抽象,我们看看这个算法的一个点。
算法如下:DominantPair(主导边)这个类型的风险,Dominant heavy links指“主导的边”,Ego-Net中存在某条边权重异常大,如下图所示。
度量方法:主特征值~总权重,大多数节点Ego-net对应带权邻接矩阵中主特征值(principal eigenvalue,即最大特征值)~总边权重也服从幂律分布,其中系数 λ 表示Ego-net中边权均匀分布, λ 接近1表示存在DominantPair的情况,衡量的公式如下:
我们来简化下这个算法思想:其实一句话,就是一个点有很多个邻居,某个邻居权重占所有邻居总权重的比例特别大
再来个更具体的例子:一个商家一个月卖了10000个订单,100个消费者,其中一个消费者买了9900单,那这个消费者占比9000/10000=90%,形成了主导边,那这个商家可能就存在异常。我们其实只要统计商家的总订单,以及每个商家-消费者维度的订单聚合,然后相除就解决了,这就是个简单的SQL计算问题,完全不用什么复杂的写算法。
当然,这里的订单数可以换成金额
订单换成点击:可以监控恶意流量什么的
订单换成领券:可以监控羊毛党什么的
·········
商家和消费者也可以换成其他的角色,根据自己的平台设计这种监控指标,我觉得能发现传统发现不了的异常,因为很少有人这么思考过。
那消费者-换地址关系呢?情况就变了,权重大反而是正常的,小反而不正常,可能是黄牛什么的,因为正常人得地址,相对比较集中,就那个几个固定的。
那消费者-充值手机呢?也是同样的,权重大反而是正常的,小反而不正常,可能是销赃款或者洗钱什么的。因为正常人,给自己手机充值,或者加几个家里人和同学什么的,有些账户给几千几万人充值,那可能就异常了。
那这个是不是可以再抽象一点,比如消费者-购物类目关系网络,按道理,每个人的购物,基本均匀分布在不同的类目,有吃穿的也有用的,如果发现一个用户,大量购买集中在某些偏门的类目,那是不是有可能这个用户或者被购买的商家有异常?是不是要买制毒的原材料?是不是在图谋什么?或者在交易什么?
每个公司的业务不一样,但是很多思路,都是可以顺着这个算法的结构去思考的,需要充分理解算法,充分理解业务,充分的想象力。
我们看到了异常检测,看到了图,但是要更加深入的去看到业务与之匹配的地方,多维度的思考,联想,并进行应用,才能让算法产生价值,所以,风控,不仅是技术问题,也是艺术。
风控挖掘的乐趣,大抵也在此了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08