作者:俊欣
来源:关于数据分析与可视化
今天我们来聊一下如何用协程来进行数据的抓取,协程又称为是微线程,也被称为是用户级线程,在单线程的情况下完成多任务,多个任务按照一定顺序交替执行。
那么aiohttp模块在Python中作为异步的HTTP客户端/服务端框架,是基于asyncio的异步模块,可以用于实现异步爬虫,更快于requests的同步爬虫。下面我们就通过一个具体的案例来看一下该模块到底是如何实现异步爬虫的。
我们先来看一下发起请求的部分,代码如下
async def fetch(url, session): try: async with session.get(url, headers=headers, verify_ssl=False) as resp: if resp.status in [200, 201]:
logger.info("请求成功")
data = await resp.text() return data except Exception as e:
print(e)
logger.warning(e)
要是返回的状态码是200或者是201,则获取响应内容,下一步我们便是对响应内容的解析
这里用到的是PyQuery模块来对响应的内容进行解析,代码如下
def extract_elements(source): try:
dom = etree.HTML(source)
id = dom.xpath('......')[0]
title = dom.xpath('......')[0]
price = dom.xpath('.......')[0]
information = dict(re.compile('.......').findall(source))
information.update(title=title, price=price, url=id)
print(information)
asyncio.ensure_future(save_to_database(information, pool=pool)) except Exception as e:
print('解析详情页出错!')
logger.warning('解析详情页出错!') pass
最后则是将解析出来的内容存入至数据库当中
这里用到的是aiomysql模块,使用异步IO的方式保存数据到Mysql当中,要是不存在对应的数据表,我们则创建对应的表格,代码如下
async def save_to_database(information, pool): COLstr = '' # 列的字段 ROWstr = '' # 行字段 ColumnStyle = ' VARCHAR(255)' if len(information.keys()) == 14: for key in information.keys():
COLstr = COLstr + ' ' + key + ColumnStyle + ',' ROWstr = (ROWstr + '"%s"' + ',') % (information[key]) async with pool.acquire() as conn: async with conn.cursor() as cur: try: await cur.execute("SELECT * FROM %s" % (TABLE_NAME)) await cur.execute("INSERT INTO %s VALUES (%s)" % (TABLE_NAME, ROWstr[:-1])) except aiomysql.Error as e: await cur.execute("CREATE TABLE %s (%s)" % (TABLE_NAME, COLstr[:-1])) await cur.execute("INSERT INTO %s VALUES (%s)" % (TABLE_NAME, ROWstr[:-1])) except aiomysql.Error as e: pass
最后我们来看一下项目启动的代码,如下
async def consumer():
async with aiohttp.ClientSession() as session: while not stop: if len(urls) != 0:
_url = urls.pop() source = await fetch(_url, session)
extract_links(source) if len(links_detail) == 0:
print('目前没有待爬取的链接')
await asyncio.sleep(np.random.randint(5, 10))
continue link = links_detail.pop() if link not in crawled_links_detail:
asyncio.ensure_future(handle_elements(link, session))
我们通过调用ensure_future方法来安排协程的进行
async def handle_elements(link, session): print('开始获取: {}'.format(link))
source = await fetch(link, session) # 添加到已爬取的集合中 crawled_links_detail.add(link)
extract_elements(source)
下面我们针对抓取到的数据进行进一步的分析与可视化,数据源是关于上海的二手房的相关信息,我们先来看一下房屋户型的分布,代码如下
house_size_dict = {}
for house_size, num in zip(df["房屋户型"].value_counts().head(10).index, df["房屋户型"].value_counts().head(10).tolist()):
house_size_dict[house_size] = num
print(house_size_dict)
house_size_keys_list = [key for key, values in house_size_dict.items()]
house_size_values_list = [values for key, values in house_size_dict.items()]
p = (
Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add("", [list(z) for z in zip(house_size_keys_list, house_size_values_list)],
radius=["35%", "58%"],
center=["58%", "42%"])
.set_global_opts(title_opts=opts.TitleOpts(title="房屋面积大小的区间", pos_left="40%"),
legend_opts=opts.LegendOpts(orient="vertical",
pos_top="15%",
pos_left="10%"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
p.render("house_size.html")
output
我们可以看到占到大多数的都是“2室1厅1厨1卫”的户型,其次便是“1室1厅1厨1卫”的户型,可见上海二手房交易的市场卖的小户型为主。而他们的所在楼层,大多也是在高楼层(共6层)的为主,如下图所示
我们再来看一下房屋的装修情况,市场上的二手房大多都是以“简装”或者是“精装”为主,很少会看到“毛坯”的存在,具体如下图所示
至此,我们就暂时先说到这里,本篇文章主要是通过异步协程的方式来进行数据的抓取,相比较于常规的requests数据抓取而言,速度会更快一些。
数据分析咨询请扫描二维码
数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10在信息爆炸的时代,做出正确的数据分析方法选择变得尤为重要。这不仅影响到数据分析的准确性,更关系到最终的决策效果。本文将详 ...
2024-11-10在当今竞争激烈的市场环境中,准确地把握市场动态和消费者需求是企业成功的关键。数据分析以其科学严谨的方法论,成为市场研究的 ...
2024-11-09在数据驱动的世界中,准确的数据分析是成功决策的基石。然而,数据分析的准确性并非一蹴而就,它需要多种方法和步骤的综合应用。 ...
2024-11-09推动银行的数字化转型是一个复杂且多维度的过程,涉及从战略、技术、组织到业务的多方面综合考量。这不仅仅是技术层面的变革,更 ...
2024-11-09国有企业作为国家经济的重要支柱,在提升经济效益和市场竞争力方面扮演着关键角色。然而,面对日益激烈的市场竞争和复杂的经济环 ...
2024-11-09业务分析师(Business Analyst,简称BA)是现代企业中不可或缺的角色。他们不仅是需求分析的专家,更是企业战略规划中的重要参与 ...
2024-11-09银行业正面临着一场全方位的数字化革命,旨在提升服务效率和客户体验,同时优化运营和增收。在这篇文章中,我们通过分析一些成功 ...
2024-11-09数据挖掘技术正在重新定义现代市场营销的方式。对于企业来说,能够深入了解消费者行为、需求和偏好是实现精准市场营销的关键, ...
2024-11-09在当今数据驱动的世界中,数据分析可视化已经成为一种必不可少的技能。它不仅帮助专业的数据分析师更好地传达信息,也使复杂的数 ...
2024-11-09在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08