数据科学家Michael Galarnyk著
我以前写过《如何构建数据科学投资组合》,其中包括向潜在的雇主展示你能做什么而不是告诉他们你能做什么的重要性。这个博客利用aSuccess is Iceberg ImagebyOrysya Stusas框架来展示人们在获得数据科学成功的过程中经常隐藏的几个方面。这篇博客旨在表明,大多数人都不得不花费相当多的努力来达到他们现在的水平。他们必须努力工作,有时经历失败,表现出纪律,坚持不懈,为目标献身,有时牺牲或冒险。说完,我们开始吧!
正如你在上面为hertweet创建的GIF中看到的那样,人们在日常模型构建中会犯很多技术错误/失败。
我们大多数编写代码或从事数据科学的人经常看到彼此工作的最终产品--而不是作为过程一部分的草稿、错误和决策。这些步骤的一点透明度会有很大的帮助。
Jake VanderPlasis在Atweeton中似乎也表达了类似的观点,在开源领域,人们通常只看到成品而不是过程。
但我敢打赌,在任何一个成功的开源项目的表面上,都有很多痛苦、痛苦和自我怀疑。
除了技术上的失败,还有其他类型的失败,包括你可以穿的类型(期刊拒绝,电子邮件拒绝,等等)。凯特琳·K·科比(Caitlin K.Kirbyy)确实穿了她的失败/拒绝。《华盛顿邮报》上有一篇文章详细描述了她的裙子是一件手工制作的及膝服装,由她在过去五年中收到的17封拒绝信(期刊拒绝、电子邮件拒绝等)制成。
顺便说一句,如果你想要更多与软件/数据科学相关的拒绝故事,有一个完整的拒绝网站,你可以去看看,这可能会启发你。
大多数人都必须努力工作才能达到他们现在的水平。我绝对不是说你必须每周例行公事地工作70-90小时,因为这听起来不健康。雷切尔·托马斯的帖子提到了这种态度可能是歧视性的和适得其反的。
我们需要尽可能地摆脱工作时间的数量才是最重要的这种肤浅的想法。科技行业对长时间工作的痴迷不仅对许多残疾人来说是不可及的,对每个人的健康和人际关系都是有害的,而且正如奥利维亚·戈尔迪尔为Quartz at Work指出的那样,关于生产率的研究表明,这只是效率低下:
正如无数研究表明的那样,这根本不是真的。工作时间越长,生产率就会急剧下降,一旦人们每周工作55小时,生产率就会完全下降,以至于平均每周工作70小时的人的生产率不会超过少工作15小时的同事。
疯狂的长时间工作在学术界也很常见,因为杰克·范德普拉斯在下面的推特上说。
虽然这条推文不是对吴恩达早先推文的评论,但我认为它表明有不同的方法可以获得成功,而不是持续不断地工作。thePython数据科学手册的作者似乎做得很好。(推特上的杰克·范德普拉斯)
与其努力工作,也许我们应该谈谈坚韧或坚持,因为杰里米·霍华德和西尔万·古格的新书中有一段关于坚韧的精彩文章。
推特上的内容是杰里米·霍华德(Jeremy Howard)“Sand Sylvain Gugger”新书的摘录。
简而言之,我认为从这件事中得到的最好的东西是:
你将面临许多障碍,既有技术上的障碍,也有(甚至更困难的)你周围不相信你会成功的人。有一种方法肯定会失败,那就是停止尝试。
生活中的许多成功都是关于坚持不懈。有很多成功人士的故事,比如爱彼迎的数据科学家彭凯利,他们真的坚持不懈,不断地工作和改进。在她的一篇博客文章中,她查看了她申请和面试了多少个职位。
Applications: 475
Phone interviews: 50
Finished data science take-home challenges: 9
Onsite interviews: 8
Offers: 2
Time spent: 6 months
她显然申请了很多工作,并一直坚持下去。在她的文章中,她甚至提到你需要如何不断地从面试经验中学习。
记下所有你被问到的面试问题,尤其是那些你没能回答的问题。你可以再次失败,但不要在同一地点失败。你应该一直在学习和提高。
这篇文章的一个主要主题是每个人都经历过一些失败。重要的部分是,有些人竭尽全力去实现那里的目标。在Andreas Madsen发布的博客中,他描述了进入人工智能(通常是计算机科学系)的顶级博士学位是多么困难。基本上,他和所有的教授交谈过,他被告知他需要“在顶级ML场馆发表1-2篇论文”才能进入顶级博士学位项目。他连续花了7个月的时间在一个没有资金和主管的研究项目上,以产生可以出版的作品。
牺牲和风险可以以许多不同的形式出现。一个风险可能是忽略来自上面的命令。WhenGreg Lindenwas在亚马逊,他做了几个有趣的项目,尽管他应该做其他事情。在他的一篇博客文章中,他描述了一个项目,这个项目是:
根据亚马逊购物车中的商品进行推荐。添加一些东西,看看弹出什么。再加几个,看看有什么变化…我黑了一个原型。在一个测试网站上,我修改了Amazon.com购物车页面,以推荐您可能喜欢添加到购物车中的其他商品。在我看来挺不错的。我开始四处展示。
出了个问题。
虽然反应是积极的,但也有一些担忧。特别是,一个营销高级副总裁坚决反对它……在这一点上,我被告知我被禁止在这方面做任何进一步的工作。我被告知亚马逊还没有准备好推出这个功能。它应该停在那里。
相反,我为在线测试准备了该特性。我相信购物车的推荐。我想衡量一下销售影响。
我听说SVP发现我在推出一个测试时很生气。但是,即使对高管来说,也很难阻止测试。测量是好的。反对测试的唯一好理由是,负面影响可能如此严重,以至于亚马逊负担不起,这是一个很难做出的声明。测试开始了。
结果很清楚。它不仅赢了,而且这个功能以如此大的优势赢了,以至于不让它直播让亚马逊付出了巨大的变革代价。随着新的紧迫性,购物车推荐推出…
当时,亚马逊肯定是混乱的,但我怀疑我忽视来自上面的命令是在冒险。尽管亚马逊很好,但它还没有一种完全包容测量和辩论的文化。
虽然我不主张忽视上级的建议,但似乎在某些情况下,冒险对公司和你自己都是有益的。
希望你能从这个博客中找到一些对你的数据科学之旅有用的建议和例子。请记住,成功人士的许多建议都存在生存偏见。总是半信半疑地接受建议或分享经验。如果你有任何问题、想法,或者只是想分享你自己的经历,请给我们留言。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20