艾哈迈德·贝斯贝斯,AI工程师//博客作者//跑步者。
这是个人的观察,但我相信你们中的许多人在阅读这篇文章时会有同样的感受。
我是一名数据科学家,我喜欢我的工作,因为我认为它涵盖了各种相互依赖的领域,使它丰富和刺激。然而,我有时不得不与那些不完全理解组织或领域中这个角色的人打交道。坦率地说,这让我和我认识的许多人都有点沮丧。
在你继续阅读之前,我应该提到,我的目的不是阻止任何人对这个角色的渴望。我只是在陈述行业中普遍出现的一些负面方面,以及避免这些负面方面的可能解决方案。
原则上,这没问题。我也不明白其他人是怎么做的。然而,我不明白的是,一些当事人对了解你在帮助他们时做了什么完全缺乏兴趣和好奇心。我不是说他们应该了解神经网络的每一个小算法细节,但至少,他们应该了解你的方法,你解决问题的方法。有时,就好像你被委托做一项没有人关心的痛苦而肮脏的任务。
有些项目经理对你正在做的事情不感兴趣,除非你做完了。我想这些家伙把管理提升到了一个全新的水平。
哦!你是数据科学家?你一定对数字很在行。你为什么不看看我的文件,把数据处理一下呢?我听说你的“蟒蛇”能很快释放出魔力。在这里,去玩我的文件,完成后来看我。
-怎么办?
为了使每个人都在同一页上,一个解决方案是向没有技术背景的团队提供培训和意识。这需要通过内部研讨会、认证或MOOC订阅广泛的技术主题,如机器学习、深度学习或NLP的介绍性讲座。当建立这些领域的知识时,队友会变得积极主动,更多地参与到建立过程中。项目经理也意识到了挑战。
嗯,十年前,当这个领域开始出现时,这个方法非常有效,Hadoop和Spark这个词到处都是。你可以把你知道的所有流行语都堆在一起,希望得到一个大支票(它奏效了!)。
这已经不是2010年了。公司现在密切关注你愿意出售的东西。他们了解市场、竞争对手和挑战。他们几乎彻底扫描了所有东西。他们也知道什么是可行的,什么是不可行的。如果你没有脱颖而出,对你的价值主张和你的数据科学团队能带来的技术专长不够清楚,你最有可能失去这笔交易。
当然,尽管如此,总有一些穿西装的胆子很大的家伙发表这种鼓舞人心的声明:
让我们在这里和那里投入一点数据科学来加强我们的宣传,并让客户支付一大笔钱!
那不是很美吗?
— What to do?
不要表现得好像数据科学家会彻底改变和破坏您的组织。市场开始知道限制是什么。与市场接轨。
我们都知道这种感觉,而且很烂。你在努力工作中失败了,而另一个人展示了你的结果,并拿走了所有的功劳。这在任何地方都很常见,当您在数据科学团队中与业务伙伴协作时,这种情况会发生得更多。
如果你对团队很有价值,你的同事自然应该让你在利益相关者面前发光发热。然后你的声音被听到并参与决策过程。
然而,如果你觉得你被当作一种可互换的资源,或者被放在一边,在阴影下工作,为那些说话的人制作数字,也许是时候重新考虑你的立场了。
— What to do?
构建数据产品时,每个人都很重要。这不应该仅仅是我们告诉自己的一个说法。它必须体现在我们的会议、演示和日常关系中。
嗯,虽然听起来很诱人,但这并不像我们想象的那么容易。仅仅因为我们配备了这些工具并不一定意味着你可以期待立即的可操作的结果。这需要建立关于业务的知识,建立正确的直觉和假设。这需要时间,而且是一个学习的过程。
让我们处理数据并让它说话。
— What to do?
接受这样一个事实,即数据科学家必须花费大量时间了解业务并建立自己的直觉。这需要采访组织中的不同参与者,对数据进行各种分析,进行试验,失败,并获得持续的建设性反馈。
如果您还想为您的数据科学团队提供最好的条件,请确保至少有干净的数据管道,并有清晰的描述。
对于数据科学家的角色仍然存在着强烈的误解。不仅非技术高管,技术领域的其他同事也认为,数据科学家对Spark、Hadoop、SQL、TensorFlow、NLP、AWS、生产级应用程序、docker等都了如指掌。掌握这些工具是很棒的,但是这个过程需要几年的时间和大量的经验。
如果你是一名数据科学家,你申请的公司在一份申请中提到了所有这些技术词汇,请仔细检查该公司。它有可能对自己的数据战略没有明确的愿景,也没有对招聘的角色有明确的定义。
我们需要修复我们的数据问题。让我们雇佣一名数据科学家。
— What to do?
数据科学家并不总是您数据问题的最终解决方案-雇用前要仔细检查。也许你需要的是一个数据分析师或者一个后端开发人员。数据科学家不是精通一切的忍者。
如果你希望你的团队成功地构建你想要构建的任何东西,确保你周围有互补的技能。
在交付一级:
在管理层面:
这是基于来自朋友和同事的讨论和几个反馈的汇编。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31