
作者:闲欢
来源:Python 技术
经常有粉丝在后台留言,问:大佬,运行你的爬虫程序怎么报错了?
我让他把报错信息发过来,看过之后一声叹息。
大多数粉丝是直接拿着代码就开始运行,然后就是等待结果,完全不去仔细阅读和理解源码,遇到报错就直接过来询问。
多数爬虫源码运行的报错都是由于访问目标网站过于频繁,从而导致目标网站返回错误或者没有数据返回。
目前大多数网站都是有反爬措施的,如果 IP 在一定时间内 请求次数超过了一定的阈值就会触发反爬措施,拒绝访问,也就是我们经常听到的“封IP”。
那么怎么解决这个问题呢?
一种解决办法就是降低访问频率,访问一次就等待一定时长,然后再次访问。这种方法对于反爬措施不严格的网站是有效的。
如果遇到反爬措施严格的网站,访问次数多了还是会被封杀。而且有时候你需要爬取数据,这种解决办法会使获取数据的周期特别长。
第二种解决办法就是使用代理 IP。我不断地切换 IP 访问,让目标网站认为是不同的用户在访问,从而绕过反爬措施。这也是最常见的方式。
接着,我们又面临一个问题:哪来这么多独立 IP 地址呢?
最省事的方式当然是花钱买服务,这种花钱买到的 IP 一般都是比较稳定可靠的。
今天我们来聊一下不花钱免费获取代理 IP 的方式。
ProxyPool 是一个爬虫的代理 IP 池,主要功能为定时采集网上发布的免费代理验证入库,定时验证入库的代理保证代理的可用性,提供API和CLI两种使用方式。
同时你也可以扩展代理源以增加代理池IP的质量和数量。
我们可以通过两种方式获取 ProxyPool 项目。
第一种是通过命令行下载:
git clone git@github.com:jhao104/proxy_pool.git
第二种是下载对应的 zip 压缩包:
我们获取到项目之后,进入到项目的根目录,运行下面的代码来安装项目所需的依赖包:
pip install -r requirements.txt
要在本地运行项目,我们需要针对本地环境修改一些配置。打开项目中的 setting.py 这个文件,根据自己本地的环境和要求修改配置。
# setting.py 为项目配置文件 # 配置API服务 HOST = "0.0.0.0" # IP PORT = 5000 # 监听端口 # 配置数据库 DB_CONN = 'redis://:pwd@127.0.0.1:8888/0' # 配置 ProxyFetcher PROXY_FETCHER = [ "freeProxy01", # 这里是启用的代理抓取方法名,所有fetch方法位于fetcher/proxyFetcher.py "freeProxy02", # .... ]
主要修改的几项配置是监听端口(PORT)、 Redis 数据库的配置(DB_CONN)和启用的代理方法名(PROXY_FETCHER)。
修改完配置之后,我们就可以愉快地使用了。
这个项目总体分为两个部分:爬取代理 IP 和 取用代理 IP。
如果你要启用爬取代理 IP 的服务,直接运行下面命令:
python proxyPool.py schedule
启动之后,你就可以看到如下的控制台信息了:
程序每隔一段时间就会定时爬取一下,直到我们的 IP 池里面有一定数量的可用 IP 。
其实,作者在这个项目中运用的原来就是到一些免费的代理网站采集 IP,然后测试 IP 的可用性,可用的就存入 Redis 中,不可用就丢弃。
所以你完全可以自己写一套程序实现这个逻辑。
要使用代理 IP,你需要启动 webApi 服务:
python proxyPool.py server
启动web服务后, 默认配置下会开启 http://127.0.0.1:5010 的api接口服务:
如果要在爬虫代码中使用的话, 可以将此api封装成函数直接使用,例如:
import requests def get_proxy(): return requests.get("http://127.0.0.1:5010/get/").json() def delete_proxy(proxy): requests.get("http://127.0.0.1:5010/delete/?proxy={}".format(proxy)) # your spider code def getHtml(): # .... retry_count = 5 proxy = get_proxy().get("proxy") while retry_count > 0: try:
html = requests.get('http://www.example.com', proxies={"http": "http://{}".format(proxy)}) # 使用代理访问 return html except Exception:
retry_count -= 1 # 删除代理池中代理 delete_proxy(proxy) return None
作为学习使用的 IP 代理池,这项目获取的足够使用了,但是对于一些复杂的爬虫项目或者商业项目的话,可能比较够呛,毕竟这种爬取的免费代理质量肯定没有那么好,不稳定是正常的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13