作者:俊欣
来源:关于数据分析与可视化
有时候我们在进行模型的训练与优化的时候,是需要基于现有的数据集来操作的,要是数据量比较充足的情况下倒是还好说,但是要是遇到数据量不够的情况,该怎么办呢?今天小编就给大家来介绍几个方法来处理这种情况。
Python当中的Faker模块主要是用来生成伪数据,包括了城市、姓名等等,并且还支持中文,在开始使用该模块之前我们先用pip命令来下载安装完成
pip install faker
我们先随机地生成一些中文数据,代码如下
from faker import Faker
fake = Faker(locale='zh_CN') ## 随机生成一个城市 print(fake.city()) ## 随机生成一个地址 print(fake.address())
output
柳州市 吉林省兴安盟县华龙任街P座 540041
要是我们想要生成其他语言或者地区表示的数据,只需要传入相对应的地区值,这里例举几个常用的,代码如下
fr_FR - French es_ES - Spanish (Spain) en_US - English (United States) de_DE - German ja_JP - Japanese ko_KR - Korean zh_CN - Chinese (China Mainland) zh_TW - Chinese (China Taiwan)
我们可以看到填入的值的模式基本上是语种的缩写加上“_”再加上地区的缩写。
除了可以随机生成例如城市名称以及地址之外等模拟数据,还有很多其他方法可用,这些方法分为以下几类
具体使用的方法大家可以参考其官网,链接是:faker.readthedocs.io/en/master/providers.html
另外我们也可以通过机器学习算法在基于真实数据的基础上生成合成数据,将后者应用于模型的训练上,例如由MIT的DAI(Data to AI)实验室推出的合成数据开源系统----Synthetic Data Vault(SDV),该模块可以从真实数据库中构建一个机器学习模型来捕获多个变量之间的相关性,要是原始的数据库中存在着一些缺失值和一些极值,最后在合成的数据集当中也会有一些缺失值与极值。
而测试表明,合成的数据能够较好地取代真实数据。接下来我们来看一下如何使用吧,首先我们先下载该模块
pip install sdv
我们会用到如下的数据集,
import pandas as pd data = pd.read_csv('data.csv') data.head()
output
接下来的步骤和我们使用sklearn模块时的步骤是类似的,代码如下
from sdv.tabular import GaussianCopula
model = GaussianCopula()
model.fit(data)
无非就是实例化具体的模型,然后将算法模型拟合到数据集中的数据,我们可以尝试生成一些数据
sample = model.sample(200) sample.head()
output
最后我们想要来评估一下模型的性能,看一下新生成的数据和真实数据相比相似性几何,代码如下
from sdv.evaluation import evaluate print(evaluate(sample, data))
output
0.533
相似性的指标范围是“0-1”,“0”意味着是最差的结果,而“1”意味着是最理想的结果,而针对以上评估出来的结果意味着我们后续还需要进一步的参数调优。
随着相关研究的进一步深入,2019年在温哥华举行的第33届神经信息处理系统会议上,另外的研究员提出了新的神经网络Conditional Tabular Generative Adversarial Networks,简称CTGAN,简而言之就是通过生成对抗网络GAN来建立和完善合成的数据表。
对于生成对抗的神经网络GANs而言,其中第一个网络为生成器,而第二个网络为鉴别器,最后生成器产生出来的数据表并没有被鉴别器分辨出其中的差异。接下来我们来看一下其中的步骤。
import pandas as pd
## 这边用到了和前面不一样的数据集 data = pd.read_csv('train.csv') data.head()
output
针对离散型的特征变量,CTGAN模型也可以合成类似的数据,代码如下
discrete_columns = ['week', 'Center_id', 'Meal_id', 'Emailer_for_promotion', 'homepage_featured']
ctgan = CTGANSynthesizer(batch_size=50,epochs=5,verbose=False)
ctgan.fit(data,discrete_columns) ## 将训练好的模型保存下来 ctgan.save('ctgan-food-demand.pkl') ## 生成200条数据集 samples = ctgan.sample(200)
samples.head()
output
我们罗列出需要最后合成来依照的特征变量,上面的例子当中是罗列出了一系列的离散型特征变量,然后我们设定好batch_size、epochs以及verbose参数进行训练,最后我们还是通过相类似的方法来评估模型的性能
from sdv.evaluation import evaluate
evaluate(new_data, data)
本文主要是立足于在机器学习的过程中存在数据量不足的情况,介绍了Faker模块和SDV模块,以及CTGAN模型,通过机器学习和深度学习等手段来生成一些数据供数据科学家使用。因为这些模型也是近年来刚出来属于较为前沿的内容,小编在对其进行表述的时候存在理解有偏差的情况,这里也是建议读者多去上网进行查阅。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31