作者:俊欣
来源:关于数据分析与可视化
有时候我们在进行模型的训练与优化的时候,是需要基于现有的数据集来操作的,要是数据量比较充足的情况下倒是还好说,但是要是遇到数据量不够的情况,该怎么办呢?今天小编就给大家来介绍几个方法来处理这种情况。
Python当中的Faker模块主要是用来生成伪数据,包括了城市、姓名等等,并且还支持中文,在开始使用该模块之前我们先用pip命令来下载安装完成
pip install faker
我们先随机地生成一些中文数据,代码如下
from faker import Faker
fake = Faker(locale='zh_CN') ## 随机生成一个城市 print(fake.city()) ## 随机生成一个地址 print(fake.address())
output
柳州市 吉林省兴安盟县华龙任街P座 540041
要是我们想要生成其他语言或者地区表示的数据,只需要传入相对应的地区值,这里例举几个常用的,代码如下
fr_FR - French es_ES - Spanish (Spain) en_US - English (United States) de_DE - German ja_JP - Japanese ko_KR - Korean zh_CN - Chinese (China Mainland) zh_TW - Chinese (China Taiwan)
我们可以看到填入的值的模式基本上是语种的缩写加上“_”再加上地区的缩写。
除了可以随机生成例如城市名称以及地址之外等模拟数据,还有很多其他方法可用,这些方法分为以下几类
具体使用的方法大家可以参考其官网,链接是:faker.readthedocs.io/en/master/providers.html
另外我们也可以通过机器学习算法在基于真实数据的基础上生成合成数据,将后者应用于模型的训练上,例如由MIT的DAI(Data to AI)实验室推出的合成数据开源系统----Synthetic Data Vault(SDV),该模块可以从真实数据库中构建一个机器学习模型来捕获多个变量之间的相关性,要是原始的数据库中存在着一些缺失值和一些极值,最后在合成的数据集当中也会有一些缺失值与极值。
而测试表明,合成的数据能够较好地取代真实数据。接下来我们来看一下如何使用吧,首先我们先下载该模块
pip install sdv
我们会用到如下的数据集,
import pandas as pd data = pd.read_csv('data.csv') data.head()
output
接下来的步骤和我们使用sklearn模块时的步骤是类似的,代码如下
from sdv.tabular import GaussianCopula
model = GaussianCopula()
model.fit(data)
无非就是实例化具体的模型,然后将算法模型拟合到数据集中的数据,我们可以尝试生成一些数据
sample = model.sample(200) sample.head()
output
最后我们想要来评估一下模型的性能,看一下新生成的数据和真实数据相比相似性几何,代码如下
from sdv.evaluation import evaluate print(evaluate(sample, data))
output
0.533
相似性的指标范围是“0-1”,“0”意味着是最差的结果,而“1”意味着是最理想的结果,而针对以上评估出来的结果意味着我们后续还需要进一步的参数调优。
随着相关研究的进一步深入,2019年在温哥华举行的第33届神经信息处理系统会议上,另外的研究员提出了新的神经网络Conditional Tabular Generative Adversarial Networks,简称CTGAN,简而言之就是通过生成对抗网络GAN来建立和完善合成的数据表。
对于生成对抗的神经网络GANs而言,其中第一个网络为生成器,而第二个网络为鉴别器,最后生成器产生出来的数据表并没有被鉴别器分辨出其中的差异。接下来我们来看一下其中的步骤。
import pandas as pd
## 这边用到了和前面不一样的数据集 data = pd.read_csv('train.csv') data.head()
output
针对离散型的特征变量,CTGAN模型也可以合成类似的数据,代码如下
discrete_columns = ['week', 'Center_id', 'Meal_id', 'Emailer_for_promotion', 'homepage_featured']
ctgan = CTGANSynthesizer(batch_size=50,epochs=5,verbose=False)
ctgan.fit(data,discrete_columns) ## 将训练好的模型保存下来 ctgan.save('ctgan-food-demand.pkl') ## 生成200条数据集 samples = ctgan.sample(200)
samples.head()
output
我们罗列出需要最后合成来依照的特征变量,上面的例子当中是罗列出了一系列的离散型特征变量,然后我们设定好batch_size、epochs以及verbose参数进行训练,最后我们还是通过相类似的方法来评估模型的性能
from sdv.evaluation import evaluate
evaluate(new_data, data)
本文主要是立足于在机器学习的过程中存在数据量不足的情况,介绍了Faker模块和SDV模块,以及CTGAN模型,通过机器学习和深度学习等手段来生成一些数据供数据科学家使用。因为这些模型也是近年来刚出来属于较为前沿的内容,小编在对其进行表述的时候存在理解有偏差的情况,这里也是建议读者多去上网进行查阅。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20