作者:徐杨老师
编辑:Mika
各位小伙伴大家好!我是徐杨老师,好久不见!
今天给大家带来5个数据科学家需要的商业技能,聊聊商业与数据科学两者如何携手并进。
这时候有同学想问了,数据科学家为什么要有商业基础呢?
假如你是一位数据科学家,擅长数学和统计学,熟练使用SQL和Python,对数据清洗可视化、统计建模、机器和深度学习等也很有经验。
但是offer却迟迟没到手,这是为什么呢?
也许老板是这么想的:
我需要的是一个可以将数据与商业结合的人,能解决复杂的数据问题,与管理层分享他的见解。
所以今天为你提供五个关键的业务知识方向,向你展示如何利用数据来实现实际的业务解决方案。
首先,了解公司的业务战略目标,并将其作为整个数据收集,建模和解释过程的指导。
并且确定受众,因为即使总体战略目标相同,每个受众也有不同的需求。熟悉关键的绩效和分析,从中获得可操作的知识。
举个例子:
了解必要的数据是否已经存储在组织中以及以何种格式存储。如图像、文字或声音这样的非结构化数据也要收集,这可帮助企业额外挖掘出更深入的信息。
定量数据是从业务或通过调查收集的,比较容易分析和直观地表示。
然而,要提供更多的丰富性和上下文,离不开定性数据也就是非结构化数据。它的分析涵盖了影响某些行为的因素,如顾客满意情况或顾客意见、质量调查等等。
首先利用BI工具,多维度探索数据。还可以进行文本挖掘,进行交互式深入研究。使用数据模型和算法模型,为出现的业务信息做出决策。
为了让你的见解清晰而引人注目,你需要使用不同类型的可视化工具,如可交互图表、动图等,从收集的数据中获得业务价值。
同时,如果输出的是算法模型,可以参考MLOps的落地流程来最大化分析价值,下一期我们就来讲一讲MLOps,敬请期待。
作为一名数据科学家,你应该对业务和技术的学习和改进有着强烈的欲望。有时要由你来激发整个组织的分析能力,并用于好的方面。
如果你在等待下一次面试时碰巧在看这个视频,就快速记住这个基本的数据科学与商业分析相结合速成指南吧!
如果大家还有其他问题,就在评论区留言吧!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20