作者:俊欣
来源:关于数据分析与可视化
在Python当中用于绘制图表的模块,相信大家用的最多的便是matplotlib和seabron,除此之外还有一些用于动态交互的例如Plotly模块和Pyecharts模块,今天小编再为大家来推荐两个用于制作可视化大屏的库,分别叫做hvPlot以及Panel,在本篇教程当中,小编依次会为大家分享
我们首先导入一些要用到的模块以及用pandas来读取数据集,代码如下
# To handle data import numpy as np import pandas as pd # To make visualizations import hvplot.pandas import panel as pn; pn.extension() from panel.template import DarkTheme
用pandas绘制出来的图表默认都是以matplotlib模块为后端,因为不具备交互性,如下图所示
sales = pd.read_csv('games_sales.csv')
sales.plot(kind='line', x='Year', y='Units sold(in millions)', color='orange', grid=True, title='Pokémon Game Sales');
output
代码中的kind参数对应的是图表的类型,X参数代表的是X轴上面的所要要用到的数据,同理,我们还指定了标题、图表的颜色等等参数,那么要是我们希望pandas在绘制图表的时候是以hvPlot为后端,需要添加如下的代码
pd.options.plotting.backend = 'holoviews'
我们同样来绘制如上所示的图表,代码如下
sales.plot(kind='line', x='Year', y='Units sold(in millions)', color='orange', grid=True, title='Pokémon Game Sales')
output
通过最右侧的工具栏,我们可以将绘制出来的图表保存、放大/缩小、移动等一系列操作。我们也可以同时将若干种图表结合在一起,绘制在同一张图上面
salesplot = sales.plot(kind='line', x='Year', y='Units sold(in millions)',
color='orange', grid=True, title='Pokémon Game Sales',
hover=False) *
sales.plot(kind='scatter', x='Year', y='Units sold(in millions)',
color='#c70000', hover_cols='Game')
salesplot
output
我们分别绘制了两张图表,散点图以及折线图,通过*将两者有效地结合到了一块儿。
在上一期小编写过的教程
【干货原创】介绍一个Python模块,Seaborn绘制的图表也能实现动态交互
里面提到用ipywidgets模块来制作并且生成组件配合着可视化图表来使用,这次我们用Panel模块也来生成一个类似的组件,代码如下
pok_types = list(df.type_1.unique()) pok_type = pn.widgets.Select(name='Type', options=pok_types) pok_type
output
我们结合该组件来绘制图表,代码如下
viz0 = data_pipeline[['pokedex_number', 'name',
'total_points']].hvplot(kind='table',title='Pokémons',
width=400, height=400)
viz0
output
我们可以通过当中的参数kind来调整要绘制的图表的类型,width以及height参数来调整图表的大小,title参数来调整图表的标题,我们来绘制一张散点图,代码如下
viz1 = data_pipeline.hvplot(x='weight_kg', y='height_m', by='type_2', kind='scatter',
hover_cols=['name', 'type_1', 'type_2'],
width=600, height=400,grid=True,
title='Relationship between Weight (kg) and Height (m), by Type' )
viz1
output
另外我们也可以同样来绘制一张柱状图,代码如下
data_damage = data_pipeline.iloc[:, -18:].mean().rename('Damage')
viz2 = data_damage.hvplot(kind='bar',c='Damage',
title='正在思考要取什么标题会比较好......',
rot=30, shared_axes=False,
colorbar=True, colormap='RdYlGn_r',
)
viz2
output
接下来我们将上面绘制的所有图表,都放置在一张数据大屏当中显示,代码如下
template = pn.template.FastListTemplate(theme=DarkTheme,
title = '数据面板',
sidebar=[
pn.pane.Markdown('# 关于这个项目'),
pn.pane.Markdown('#### 这个项目的数据来源是[Kaggle](https://www.kaggle.com/datasets/mariotormo/complete-pokemon-dataset-updated-090420) and on [Wikipedia](https://en.wikipedia.org/wiki/Pok%C3%A9mon_(video_game_series)#Reception) about Pokémons to explore different types of visualizations using HoloViz tools: [Panel](https://panel.holoviz.org/) [hvPlot](https://hvplot.holoviz.org/)'),
pn.pane.JPG('图片的路径.jpg', sizing_mode='scale_both'),
pn.pane.Markdown('[图片的来源](https://unsplash.com/photos/dip9IIwUK6w)'),
pn.pane.Markdown('## Filter by Type'),
pok_type
],
main=[pn.Row(
pn.Column(viz0.panel(width=600, height=400, margin=(0,20))),
pn.Column(pn.Row(viz1.panel(width=700, height=250, margin=(0,20))),
pn.Column(viz2.panel(width=700, height=250), margin=(0,20))),
),
pn.Row(salesplot.opts(width=1400, height=200))
],
accent_base_color='#d78929',
header_background='#d78929',
sidebar_footer='<br><br><a href=".......">GitHub链接</a>',
main_max_width='100%' )
template.servable();
template.show()
output
Launching server at http://localhost:63968 <bokeh.server.server.Server at 0x1bd811e82b0>
我们按照上述的链接来浏览器中打开,数据大屏面板就可以做好了,如下图所示
数据分析咨询请扫描二维码
在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30