京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:派森酱
来源:Python技术
文 | ssw
来源:Python 技术「ID: pythonall」
我负责十多个地灾项目,经常需要了解设备的离线情况。公司网站按项目提供了excel表格,看起来较乱,这是下载的数据:
从原始表格里,不太容易看出这些信息:
这是用脚本,将数据排序分组配色后的效果(脚本和数据文件见文末)
先将“最后上线时间”一列设置为行索引,使用pd.to_datetime转换为datetime类型,再排序
import pandas as pdfrom datetime import datetime,timedeltadf2 = pd.read_excel("C:/sf3/sf3/excel/1170_04-28.xlsx",sheet_name="邵阳")#将“最后上线时间”一列设置为行索引new = df2.set_index(pd.to_datetime(df2['最后上线时间']))#新列重命名new.index.name = 'last'#按时间排序new.sort_values('最后上线时间', ascending=True,inplace=True)
输出:
分组可以从“设备别名”这列获取,新增一列“设备类型”
#新增一列“设备类型”new['设备类型'] = new['设备别名'].str.split('0').str[0].str.split(' ').str[0]new2 = new.groupby(['设备类型','最后上线时间','设备别名','连接状态','所属监测点'],as_index=False)new3 = new2.all()
输出:
now = datetime.now().strftime('%Y-%m-%d')sevenDaysAgo = (datetime.now() + timedelta(days=-7)).strftime('%Y-%m-%d')new3.style.highlight_between(left=sevenDaysAgo,right=now,subset=['最后上线时间'],props='font-weight:bold;color:rgb(64, 158, 255)')
输出:
new3.style.highlight_between(left=sevenDaysAgo,right=now,subset=['最后上线时间'],props='font-weight:bold;color:rgb(64, 158, 255)').highlight_between(left='普适型声光报警器',right='普适型声光报警器',subset=['设备类型'],props='background:#c7f5fe').highlight_between(left='普适型声光报警器',right='声光报警器',subset=['设备类型'],props='background:#c7f5fe').highlight_between(left='普适型GNSS基准站',right='普适型GNSS基准站',subset=['设备类型'],props='background:#ffa5a5').highlight_between(left='普适型GNSS监测站',right='普适型GNSS监测站',subset=['设备类型'],props='background:#a1eafb')
输出:
.highlight_between(left='在线',right='在线',subset=['连接状态'],props='background:#f9ed69')
输出:
文件下载地址:http://ssw.fit/file/
import pandas as pdfrom datetime import datetime,timedeltadf2 = pd.read_excel("C:/sf3/sf3/excel/1170_07-28.xlsx",sheet_name="邵阳")new = df2.set_index(pd.to_datetime(df2['最后上线时间']))new.index.name = 'last'new.sort_values('最后上线时间', ascending=True,inplace=True)new['设备类型'] = new['设备别名'].str.split('0').str[0].str.split(' ').str[0]new2 = new.groupby(['设备类型','最后上线时间','设备别名','连接状态','所属监测点'],as_index=False)new3 = new2.all()now = datetime.now().strftime('%Y-%m-%d')sevenDaysAgo = (datetime.now() + timedelta(days=-7)).strftime('%Y-%m-%d')new3.style.highlight_between(left=sevenDaysAgo,right=now,subset=['最后上线时间'],props='font-weight:bold;color:rgb(64, 158, 255)').highlight_between(left='普适型声光报警器',right='普适型声光报警器',subset=['设备类型'],props='background:#c7f5fe').highlight_between(left='普适型声光报警器',right='声光报警器',subset=['设备类型'],props='background:#c7f5fe').highlight_between(left='普适型GNSS基准站',right='普适型GNSS基准站',subset=['设备类型'],props='background:#ffa5a5').highlight_between(left='普适型GNSS基站',right='普适型GNSS基站',subset=['设备类型'],props='background:#ffa5a5').highlight_between(left='普适型GNSS监测站',right='普适型GNSS监测站',subset=['设备类型'],props='background:#a1eafb').highlight_between(left='普适型裂缝计',right='普适型裂缝计',subset=['设备类型'],props='background:#a6e3e9').highlight_between(left='普适型雨量计',right='普适型雨量计',subset=['设备类型'],props='background:#71c9ce').highlight_between(left='在线',right='在线',subset=['连接状态'],props='background:#f9ed69').highlight_between(left='普适型变形桩',right='普适型变形桩',subset=['设备类型'],props='background:#cbf1f5')
项目经理要我整理某个项目的离线表给他,修改下脚本里的sheet_name即可。是不是省事呢?
如果你觉得本文对你有帮助,还请点个赞支持一下~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06