自2018年开始,数据分析师的岗位就开始火热,很多培训机构开始疯狂的鼓吹数据分析人口如何稀缺以及数据分析如何高薪。在看招聘机会的时候,很多JD岗位描述里具备Python,数据挖掘算法等,所以很多人花了大量的时间学习Python和机器学习,其实工作中可能几乎都用不到。JD也多半是用人部门说要招一个数据分析师,然后HR直接从某处粘贴过来的,造成了应聘者的困惑,不知道具体是干嘛的。
接下来给大家聊下互联网数据分析师的类型以及未来潜在的发展路径。
要聊数据分析师,首先得从数据开始,了解互联网公司的数据流程,可以参照下方的这个流程图,通过流程我们可以识别数据分析师的种类。
通过这个图由下往上我们可以看到三大类型的数据分析师:数据开发层,数据智能应用层,业务解读层。02程序猿-数据开发类
数据开发是偏技术序列的数据分析师。这里的岗位主要分为两类:
一类是数据仓库型同学。工作内容涉及数据底层表,数据模型搭建,进行ETL转换建立维度表,针对业务线建立hive报表,还有spark与hadoop这种大数据平台的分析师。
还有一类是偏算法与数据挖掘的分析师。就是主要根据需要建立一些用户的打标签体系,比如根据用户的消费维度,浏览维度等等进行打标签。还有一块是根据用户相关标签进行推荐算法的应用。
相对来说数仓的技术门槛略低一些,人数相对较多,这块的发展路径就是技术序列往上爬,到数据库,算法经理/总监等。
数据产品部分属于数据应用层,根据业务方的需求,将一些常见看数取数的以产品的形式呈现。这块也主要分为3种类型:
一种是提供查数取数的平台化数据产品,对象是分析师的大数据的取数平台(主要是SQL语言来查询),对象是运营和业务人员的报表与数据集取数平台(通过几个维度字段筛选)。
还有一种是将常见看数的场景以可视化的平台展现(方便业绩走势和区域达成,搜索词热度排名与收益情况等),像淘宝就有提供的针对商家的生意参谋这种的数据产品,自媒体平台像微信公众号也有数据产品看自己文章的一些维度的数据图。
▲ 图片来源百度:淘宝给平台商家用的生意参谋▲ 图片来源百度:微信公众号提供给创作者的文章数据分析工具最后一块是现在比较火的数据中台,将各业务线数据打通,然后提供统一的数据标签接口,携程内部是由数据智能部中在打造这一块,属于在发展阶段。
这块的发展路径可以走数据产品经理路线,是既要有数据分析技能也要有产品设计管理的技能,比较新兴的一块领域。
数据的解读层就是目前人数需求最多的偏业务型的数据分析师,也是入门门槛最低的岗位。这种数据分析师由于相对技术的同学来说是靠近业务的,业务的领域更多的是跟对接需求的领域是相关的,领域取决于业务模块类型。
业务型分析师的主要工作内容我觉得理解成一句话就是数据需求项目管理,对接业务线的需求方,然后沟通相关需求,了解业务背景,最后通过数据处理与分析输出结果,最后与相关方确认结论后,实现项目交付。
日常3块工作主要是:
1- 临时性的取数;这是一个数据分析师刚到一家公司起步的时候做的最多的工作,首先是一些略复杂的取数需求,业务方自己能力无法实现,也有来自老板想要看一些数据,在这个同时可以熟悉一些数据口径,和对于数据背后业务意义有更多的理解。
2- 建立指标监控体系;接地气一点就是做报表。根据业务线KPI关心的内容建立指标监控报表,输出周期性的业务周报月报。
3- 数据分析项目,主要是业务线的异常原因分析,加上一些数据分析专项项目(比如一些场景的描述性统计洞察,一些基本的回归预测模型)。
从工作场景基本上可以看出,绝大部分场景是SQL取数/或者数据集取数,然后excel可以作图制作报告,很少的建模场景会用到Python。
没有那么技术,也没有那么业务,所以好入门,也很容易被替代,想成为数据分析专家,重点是懂业务的基础上加一些分析思路,这才是灵魂。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20