1. 模型介绍
1898 年,美国有一个叫 Elmo Lewis 的人,提出了 漏斗模型的概念,后来被总结为 AIDA模型,也称为「 爱达」公式,首字母分别代表:
(1)注意 Attention
(2)兴趣 Interest
(3)欲望 Desire
(4)行动 Action
从吸引客户的注意,到引起客户的兴趣,再到产生拥有的欲望,最后形成购买的行动,每个环节都会有客户流失,越靠后的环节,客户数量往往就越少,画出来的图形,就像一个漏斗。
2. 应用举例
从销售漏斗图的形状,我们就能比较直观地看到每个环节的转化情况。通过横向或纵向的对比,发现业务中可能存在的问题,然后进一步分析原因,从而有针对性地提出解决问题的建议。
一个好的模型,可以促进沟通和行动,从而产生良性循环的好结果。
你可以根据自身业务的实际情况,细分为更多的环节。
下面是用 Python 绘制销售漏斗图的代码:
# 导入库
importpyecharts.options asopts
frompyecharts.charts importFunnel
# 定义数据
x_data = [ ‘目标客户’, ‘意向客户’, ‘订购客户’]
y_data = [ 100, 80, 20]
data = [[x_data[i], y_data[i]] fori inrange(len(x_data))]
# 画漏斗图
c = (
Funnel(init_opts=opts.InitOpts(width= “1000px”, height= “600px”))
.add(
# 系列名称
series_name= “”,
# 系列数据项
data_pair=data,
# 数据图形间距
gap= 2,
# 标签配置项
label_opts=opts.LabelOpts(is_show= True, position= “inside”, font_size= 18),
# 图元样式配置项
itemstyle_opts=opts.ItemStyleOpts(color= ‘#00589F’, border_width= 1),
)
.set_global_opts(
# 设置标题
title_opts=opts.TitleOpts(title= “销售漏斗模型”, pos_left= ‘center’,
title_textstyle_opts=opts.TextStyleOpts(font_size= 26)),
# 隐藏图例
legend_opts=opts.LegendOpts(is_show= False)
)
.render( “销售漏斗模型.html”)
)
3. 分析思考
在应用分析思维模型的时候,我们不要停留在问题的表面,而要透过现象看本质,思考模型背后的逻辑。
(1)过程重于结果
结果是由过程产生的,如果每个过程都做好了,那么结果通常不会太差。
(2)预防重于纠错
在问题发生之前,提前预测到可能出现的问题,并采取相应的预防措施,这比问题发生之后再进行纠错更加重要。
有一个「扁鹊三兄弟」的故事,据说扁鹊的大哥医术最高明,因为他能预防疾病的发生。
(3)该说的要说到
让过程变得制度化、规范化、程序化。
如果不能实行法治,那么过程就会变得随意。
(4)说到的要做到
凡是制度化的内容,都必须严格执行。
如果有制度却不执行,那么还不如没有制度。
(5)做到的要见到
凡是已经发生的过程,都要留下记录。
如果没有记录,那么就不利于管理决策。
(6)让流程标准化
在深入细致研究的基础上,借鉴优秀的经验,制定标准化的流程。
如果没有标准化的流程,那么就难以沉淀成功的经验。
小结
销售漏斗模型,是科学反映销售效率的一个模型,本质上是对销售过程的细化管理,可以帮助我们把流程标准化并沉淀下来。
最后,提醒一下: 任何一个分析思维模型,都不可能解决所有的问题。我们应该根据实际情况,把更多的时间和精力,用来灵活地选择和应用多种分析思维模型,从而做出更加科学的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30