1. 模型介绍
1898 年,美国有一个叫 Elmo Lewis 的人,提出了 漏斗模型的概念,后来被总结为 AIDA模型,也称为「 爱达」公式,首字母分别代表:
(1)注意 Attention
(2)兴趣 Interest
(3)欲望 Desire
(4)行动 Action
从吸引客户的注意,到引起客户的兴趣,再到产生拥有的欲望,最后形成购买的行动,每个环节都会有客户流失,越靠后的环节,客户数量往往就越少,画出来的图形,就像一个漏斗。
2. 应用举例
从销售漏斗图的形状,我们就能比较直观地看到每个环节的转化情况。通过横向或纵向的对比,发现业务中可能存在的问题,然后进一步分析原因,从而有针对性地提出解决问题的建议。
一个好的模型,可以促进沟通和行动,从而产生良性循环的好结果。
你可以根据自身业务的实际情况,细分为更多的环节。
下面是用 Python 绘制销售漏斗图的代码:
# 导入库
importpyecharts.options asopts
frompyecharts.charts importFunnel
# 定义数据
x_data = [ ‘目标客户’, ‘意向客户’, ‘订购客户’]
y_data = [ 100, 80, 20]
data = [[x_data[i], y_data[i]] fori inrange(len(x_data))]
# 画漏斗图
c = (
Funnel(init_opts=opts.InitOpts(width= “1000px”, height= “600px”))
.add(
# 系列名称
series_name= “”,
# 系列数据项
data_pair=data,
# 数据图形间距
gap= 2,
# 标签配置项
label_opts=opts.LabelOpts(is_show= True, position= “inside”, font_size= 18),
# 图元样式配置项
itemstyle_opts=opts.ItemStyleOpts(color= ‘#00589F’, border_width= 1),
)
.set_global_opts(
# 设置标题
title_opts=opts.TitleOpts(title= “销售漏斗模型”, pos_left= ‘center’,
title_textstyle_opts=opts.TextStyleOpts(font_size= 26)),
# 隐藏图例
legend_opts=opts.LegendOpts(is_show= False)
)
.render( “销售漏斗模型.html”)
)
3. 分析思考
在应用分析思维模型的时候,我们不要停留在问题的表面,而要透过现象看本质,思考模型背后的逻辑。
(1)过程重于结果
结果是由过程产生的,如果每个过程都做好了,那么结果通常不会太差。
(2)预防重于纠错
在问题发生之前,提前预测到可能出现的问题,并采取相应的预防措施,这比问题发生之后再进行纠错更加重要。
有一个「扁鹊三兄弟」的故事,据说扁鹊的大哥医术最高明,因为他能预防疾病的发生。
(3)该说的要说到
让过程变得制度化、规范化、程序化。
如果不能实行法治,那么过程就会变得随意。
(4)说到的要做到
凡是制度化的内容,都必须严格执行。
如果有制度却不执行,那么还不如没有制度。
(5)做到的要见到
凡是已经发生的过程,都要留下记录。
如果没有记录,那么就不利于管理决策。
(6)让流程标准化
在深入细致研究的基础上,借鉴优秀的经验,制定标准化的流程。
如果没有标准化的流程,那么就难以沉淀成功的经验。
小结
销售漏斗模型,是科学反映销售效率的一个模型,本质上是对销售过程的细化管理,可以帮助我们把流程标准化并沉淀下来。
最后,提醒一下: 任何一个分析思维模型,都不可能解决所有的问题。我们应该根据实际情况,把更多的时间和精力,用来灵活地选择和应用多种分析思维模型,从而做出更加科学的决策。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20