
1. 模型介绍
1898 年,美国有一个叫 Elmo Lewis 的人,提出了 漏斗模型的概念,后来被总结为 AIDA模型,也称为「 爱达」公式,首字母分别代表:
(1)注意 Attention
(2)兴趣 Interest
(3)欲望 Desire
(4)行动 Action
从吸引客户的注意,到引起客户的兴趣,再到产生拥有的欲望,最后形成购买的行动,每个环节都会有客户流失,越靠后的环节,客户数量往往就越少,画出来的图形,就像一个漏斗。
2. 应用举例
从销售漏斗图的形状,我们就能比较直观地看到每个环节的转化情况。通过横向或纵向的对比,发现业务中可能存在的问题,然后进一步分析原因,从而有针对性地提出解决问题的建议。
一个好的模型,可以促进沟通和行动,从而产生良性循环的好结果。
你可以根据自身业务的实际情况,细分为更多的环节。
下面是用 Python 绘制销售漏斗图的代码:
# 导入库
importpyecharts.options asopts
frompyecharts.charts importFunnel
# 定义数据
x_data = [ ‘目标客户’, ‘意向客户’, ‘订购客户’]
y_data = [ 100, 80, 20]
data = [[x_data[i], y_data[i]] fori inrange(len(x_data))]
# 画漏斗图
c = (
Funnel(init_opts=opts.InitOpts(width= “1000px”, height= “600px”))
.add(
# 系列名称
series_name= “”,
# 系列数据项
data_pair=data,
# 数据图形间距
gap= 2,
# 标签配置项
label_opts=opts.LabelOpts(is_show= True, position= “inside”, font_size= 18),
# 图元样式配置项
itemstyle_opts=opts.ItemStyleOpts(color= ‘#00589F’, border_width= 1),
)
.set_global_opts(
# 设置标题
title_opts=opts.TitleOpts(title= “销售漏斗模型”, pos_left= ‘center’,
title_textstyle_opts=opts.TextStyleOpts(font_size= 26)),
# 隐藏图例
legend_opts=opts.LegendOpts(is_show= False)
)
.render( “销售漏斗模型.html”)
)
3. 分析思考
在应用分析思维模型的时候,我们不要停留在问题的表面,而要透过现象看本质,思考模型背后的逻辑。
(1)过程重于结果
结果是由过程产生的,如果每个过程都做好了,那么结果通常不会太差。
(2)预防重于纠错
在问题发生之前,提前预测到可能出现的问题,并采取相应的预防措施,这比问题发生之后再进行纠错更加重要。
有一个「扁鹊三兄弟」的故事,据说扁鹊的大哥医术最高明,因为他能预防疾病的发生。
(3)该说的要说到
让过程变得制度化、规范化、程序化。
如果不能实行法治,那么过程就会变得随意。
(4)说到的要做到
凡是制度化的内容,都必须严格执行。
如果有制度却不执行,那么还不如没有制度。
(5)做到的要见到
凡是已经发生的过程,都要留下记录。
如果没有记录,那么就不利于管理决策。
(6)让流程标准化
在深入细致研究的基础上,借鉴优秀的经验,制定标准化的流程。
如果没有标准化的流程,那么就难以沉淀成功的经验。
小结
销售漏斗模型,是科学反映销售效率的一个模型,本质上是对销售过程的细化管理,可以帮助我们把流程标准化并沉淀下来。
最后,提醒一下: 任何一个分析思维模型,都不可能解决所有的问题。我们应该根据实际情况,把更多的时间和精力,用来灵活地选择和应用多种分析思维模型,从而做出更加科学的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29