01、什么是aha 时刻
Aha时刻也叫惊喜时刻,是用户第一次认识到产品价值时,脱口而出“啊哈,原来这个产品可以帮我做这个啊。”简单来说就是用户第一次使用时候的惊喜体验。
Aha时刻主要发生在用户激活阶段,它是用户激活的关键。当用户被吸引来,并不是所有都会转化成活跃用户,但如果用户获得Aha时刻,即从产品中发现了价值,就会顺利转化成活跃用户,而且较容易转化成粘性较高的忠诚用户。
Aha时刻也并不是虚无缥缈的,他有一些具体的规律:清晰、具体、可量化。总的来说,他可以用一句话来描述:(谁)在(多长时间内)完成(多少次)(什么行为)?
以下列举出几个代表性APP的用户Aha时刻:
支付宝,7天内稳定使用支付宝3个以上的功能。
Faceu激萌,一天利用滤镜完成1张照片的美化。
Airbnb,6个月时间完成首次订单,并且有4星以上评价
02、aha 时刻的价值
单个用户在产品中的生命周期包含四个阶段,拉新 -> 激活 -> 留存 -> 流失, 由于现在拉新的成本越来越大, 所以我们希望的是拉来一个用户, 他们都能够尽可能的留下来, 所以拉承一体化的打法非常重要。
不当当是把用户从渠道利用采买的方法拉过来, 同时要做好用户来到我们app 上的承接, 那么怎么做做承接呢, 就需要针对用户进行相对应的aha 时刻的分析, 去发现留存的aha时刻
当我们找到用户的aha 时刻, 我们就可以针对性的引导用户去让他们达到他们的aha 时刻, 从而提高相应的留存
比如我们玩抖音的时候, 通过数据分析发现 7天内 用滤镜拍了 三个视频的用户的留存率会大大提高, 那么作为产品经理就可以去引导用户多用滤镜去拍视频, 同时对于滤镜本身的功能我们也可以相对应的进行优化
03、如何挖掘aha 时刻
那么我们如何去挖掘具体一款app 他们的aha moment 呢, 我们以留存为例子, 聊聊怎么利用数据分析去挖掘 用户留存的 aha moment。
1. 特征行为提取
拿某直播app 作为例子, 与留存的相关的行为可以分为 登录行为, 观看行为, 弹幕行为, 付费行为, 然后在每一个大的行为分类进行小的指标的刻画。
比如去描述登录的行为我们就可以用 30天登录天数, 7天登录天数, 还可以用比率型指标, 像最近30天的登录天数和过去30天的登录的天数的比值, 这个反应了用户活跃度的变化
2. 相关性分析
我们以y=1 表示用户留存, 0 表示用户不留存(流失),这样每一个用户就可以用0 和1 表示他留不留存下来
同时我们把用户的每一个行为特征都用具体的数字去量化出来, 比如用户的观看行为, 我们就可以用30天每天的平均观看时长来表示, 观看时长越长可能就代表用户对直播的app 越感兴趣,
同样的其他的数据, 比如发弹幕等等也是从其他维度去刻画用户的行为特征, 那么我们就可以得到比如用户 a, 30天观看天数XX天, 日均观看时长xx 分钟, 是否留存, 这样很多行的数据.
每一个用户一行, 然后我们就可以用之前的讲过的相关性分析的方法(_相关性分析法请见数据分析方法和思维—相关性分析法 ),去挖掘哪些行为和留存相关, 因为挖掘用户aha moment 的前提是要保证这些行为是跟我们研究的留存是有关系的。
留存相关最大的四大因素:
•30天或者7天登录天数(cor: 0.66)
•30天观看品类个数(cor: 0.44)
•30天观看主播数 (cor: 0.37)
•30天日均观看时长(cor: 0.26)
这里的cor 代表每一个行为特征和留存的相关性大小, cor 的值越大代表相关性越大。
3. aha moment 的计算
发现了影响留存了原因以后, 我们就要寻找这些行为是达到一个怎么样的值以后, 会大大影响留存的概率, 所以我们计算了30天登录天数, 7天登录天数, 月日均观看时长, 30天观看主播数, 30天观看品类数和留存的关系 下面是画出来的图
拿30天登录天数作为例子, 横轴就是 30天内不同登录天数, 纵轴就是留存率, 当横轴为7的时候, 留存率趋于稳定, 这时候就达到较稳定的状态也被称作 aha moment.
我们可以发现几个神奇的aha moment
月登录4天
周登录三天
月观看7个主播数
月观看4个品类数
月日均观看时长4分钟
这里的aha moment 说明用户在一个月登录4天, 一周登录三天, 月观看7个主播数, 月观看4个品类数, 月日均观看时长4分钟, 会大大提高用户的留存率
4. 业务价值
当我们找到用户的aha moment 的时候, 我们就要跟产品或者运营一起讨论沟通, 如何通过现在端内一些产品的功能的优化提高用户的登录天数, 观看主播数等等。
比如登录天数, 我们就可以利用比如登录签到领取礼包的方式诱发用户去登录, 让用户达到具体的aha moment 的数字, 比如一周引导用户登录3天就可以领取一个大奖
比如观看的主播数, 我们就可以利用比如用户在观看直播间的时候推荐一些相关的主播, 这些主播可能是用户喜欢的同种类型的主播或者根据用户的兴趣标签选出来的可能喜欢的主播
因为所有的策略 要围绕 用户+ 需求+ 场景去设计的, 用户在观看直播间的时候, 这是一种场景, 在这个场景下用户是有一定需求是可以给我推我可能喜欢的主播
这样产品的承接形态也比较自然
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31