SPSS统计分析案例:最优尺度回归
1、什么是最优尺度回归?
英文简称CATREG,也称分类回归。
普通线性回归对数据的要求十分严格,当遇到分类变量时,线性回归无法准确地反映分类变量不同取值的距离,比如性别变量,男性和女性本身是平级的,没有大小、顺序、趋势区分,若直接纳入线性回归模型,则可能会失去自身的意义。
最优尺度回归就是为了解决类似问题,它擅长将分类变量不同取值进行量化处理,从而将分类变量转换为数值型进行统计分析。可以说有了最优尺度回归方法,将大大提高分类变量数据的处理能力,突破分类变量对分析模型选择的限制,扩大回归分析的应用能力。
2、案例数据:
某品牌服装为了解消费者对本品牌满意度情况,通过调查问卷收集到消费者的年龄、性别、月收入以及满意度等数据。其中年龄包括七个年龄段,性别为男女二分类水平,月收入包括(无收入、低档、中等、高档)四个取值水平,满意度分为(不满意、一般、满意)三档水平。根据数据情况来看,影响品牌满意度的自变量均是分类变量,普通线性回归方法无法胜任,适合采用最优尺度回归方法进行分析。
3、SPSS菜单参数设置(主要参数)
案例数据包括4个变量,因变量为满意度,性别、年龄、月收入作为自变量。
第一步:打开主菜单。
在SPSS数据视图下,在菜单栏中选择【分析】【回归】【最优尺度】选项,调出SPSS分类回归主菜单界面。
第二步:定义尺度。
为因变量和所有自变量指定最合适的测度类别。首先从左侧的变量栏中选择“满意度”,按箭头按钮方向移入因变量框内,选中底部的“定义尺度”按钮,打开相应对话框,因为满意度的3个取值水平是代表着满意程度,含有次序信息,因此选择“有序”单选按钮,完成对因变量的最优尺度定义。
相似的,将3个自变量移入自变量框内,性别定义为名义尺度,年龄定义为有序尺度,月收入定义为有序尺度。
第三步:其他参数设置
此时直接点击主菜单下的“确定”按钮,即可执行最优尺度回归过程,其他参数接受SPSS软件的默认设置。为了得到更多直观的结果,有必要设置更多参数。本案例主要设置【图】按钮菜单里的参数。
打开【分类回归:图】按钮菜单,将所有变量移入右侧的转换图框内,要求软件输出原分类变量各取值经最优尺度变换后的数值对应图。
4、主要结果解读
(1)模型摘要表
最优尺度回归模型拟合性能,主要看调整的R方,该指标反映模型拟合效果,本例调整R方值偏低,说明模型对变量总变异的解释能力不足,不适合大规模推广。
(2)方差分析表
回归模型的统计学意义,主要看sig值,本例0.006,小于显著性水平临界值0.05,说明模型显著,具有统计学意义。
(3)回归系数表
本次回归模型中3个自变量的系数表,直接看显著性值,发现在5%置信度下,月收入因素对模型的影响并不显著,年龄和性别两个因素对模型均有显著统计学意义。
(4)变量最优尺度转换图
这项结果主要是看整个分析过程中分类变量是如何转换为标准数值尺度的,是一个过程性的结果,并非关键结果。
因变量满意度是按照有序尺度转换的,此时可以看出转换后2-3之间的距离大于1-2,而并非此前等间隔距离,软件自动为其计算了最优的量化标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31