使用R进行数据匹配的方法
R中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能。与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式。 其中inner为默认的匹配模式。本篇文章我们将介绍merge函数的使用方法和4种拼接模式的区别。
merge函数的使用方法很简单,以下是官方的函数功能介绍和使用说明。merge函数中第一个出现的数据表是拼接后的left部分,第二个出现的数据表是拼接后的right部分。merge默认会按照两个数据表中共有的字段名称进行匹配和拼接。
merge
开始使用merge函数进行数据拼接之前先读取需要进行匹配的两个数据表,并命名为loan_status表和member_info表。
#读取并创建贷款状态数据表
loan_status=data.frame(read.csv('loan_status.csv',header = 1))
#读取并创建用户信息数据表
member_info=data.frame(read.csv('member_info.csv',header = 1))
下面我们分别查看了两个数据表中的内容。这个示例中的两个数据表较小,可以完整显示出来,如果数据量较大的话可以就不能这么直观的查看了。
#查看贷款状态数据表
loan_status
#查看用户信息数据表
member_info
对于较大的数据表,可以使用dim函数查看数据表的维度,下面我们分别查看了贷款状态表和用户信息表的维度。贷款状态表有27行7列,用户信息表有25行4列。
dim(loan_status);dim(member_info)
[1] 27 7
[1] 25 4
使用names函数查看两个数据表的列名称,下面分别显示了代码和列名称。可以发现,两个数据表中有一个共同的列member_id。
#查看两个数据表的列名称
names(loan_status);names(member_info)
[1] "member_id" "loan_amnt" "term""issue_d" "loan_status" "total_pymnt_inv" "total_rec_int"
[1] "member_id" "grade" "emp_length" "annual_inc"
inner匹配
inner模式是merge的默认匹配模式,我们通过下面的文氏图来说明inner的匹配方法。Inner模式提供在loan_status和member_info表中共有字段的匹配结果。也就是对两个的表交集部分进行匹配和拼接。单独只出现在一个表中的字段值不会参与匹配和拼接。从下面的匹配结果中也可以看出,共有22行,包含了loan_status和member_info的交集。
#inner模式匹配
merge(loan_status,member_info,by = 'member_id')
outer模式是两个表的汇总,将loan_status和member_info两个要匹配的两个表汇总在一起,生成一张汇总的唯一值数据表以及匹配结果。从结果中可以看出共包含30行数据,比两个表的行数都要多。并且在grade和其他字段包含Na值,这些是在两个表中匹配不到的内容。
#outer模式匹配
merge(loan_status,member_info,all=TRUE,sort=TRUE)
left模式是左匹配,以左边的数据表loan_status为基础匹配右边的数据表member_info中的内容。匹配不到的内容以NaN值显示。在Excel中就好像将Vlookup公式写在了左边的表中。下面的文氏图说明了left模式的匹配方法。Left模式匹配的结果显示了所有左边数据表的内容,以及和右边数据表共有的内容。
以下为使用left模式匹配并拼接后的结果,loan_status在merge函数中第一个出现,因此为左表,member_grade第二个出现,为右表。匹配模式为all.x=TRUE。从结果中可以看出left匹配模式保留了一张完整的loan_status表,以此为基础对member_info表中的内容进行匹配。loan_status表中有5个member_id值在member_info中无法找到,因此grade字段显示为NA值。
merge(loan_status,member_info,all.x=TRUE,sort=TRUE)
right与left模式正好相反,right模式是右匹配,以右边的数据表member_info为基础匹配左边的数据表loan_status。匹配不到的内容以NA值显示。下面通过文氏图说明right模式的匹配方法。Right模式匹配的结果显示了所有右边数据表的内容,以及和左边数据表共有的内容。
以下为使用right模式匹配拼接的结果,从结果表中可以看出right匹配模式保留了完整的member_info表,以此为基础对loan_status表进行匹配,在loan_status数据表中有3个条目在member_info数据表中无法找到,因此显示为了NA值。
merge(loan_status,member_info,all.y=TRUE,sort=TRUE)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14