R语言中的离群值检测和处理
数据中的离群值往往会扭曲预测结果并影响模型精度,回归模型中离群值的影响尤其大,因此我们需要对其进行检测和处理。
离群值检测的重要性
处理离群值或者极端值并不是数据建模的必要流程,然而,了解它们对预测模型的影响也是大有裨益的。数据分析师们需要自己判断处理离群值的必要性,并结合实际问题选取处理方法。那么,检测离群值的重要性体现在哪儿呢?其实,由于离群值的存在,模型的估计和预测可能会有很大的偏差或者变化。我们用汽车数据来说明这个现象。
我将用包含和不含离群值的汽车数据来建立一个简单的线性回归模型,以此阐述离群值的影响。为了更好的区分它的效应,我在原始数据集中人为地加入了极端值,然后利用线性归回做预测。
# 给数据集插入离群值
cars1 <- cars[1:30, ] # 原始数据
cars_outliers <- data.frame(speed = c(19, 19, 20, 20, 20),
dist = c(190, 186, 210, 220, 218)) # 引入离群值
cars2 <- rbind(cars1, cars_outliers) # 包含李全职的数据
# 绘制包含离群值的数据建模结果
par(mfrow = c(1, 2))
plot(cars2$speed, cars2$dist, xlim = c(0, 28), ylim=c(0, 230),
main = "With Outliers", xlab = "speed", ylab = "dist",
pch = "*", col = "red", cex = 2)
abline(lm(dist ~ speed, data = cars2), col = "blue", lwd = 3, lty = 2)
# 绘制原始数据建模加过,留意回归线斜率的变化
plot(cars1$speed, cars1$dist, xlim = c(0, 28), ylim = c(0, 230),
main = "Outliers removed \n A much better fit!",
xlab = "speed", ylab = "dist", pch = "*", col = "red", cex = 2)
abline(lm(dist ~ speed, data = cars1), col = "blue", lwd = 3, lty = 2)
结果如下
留意一下移除离群值后拟合线的斜率变化。如左图所示,如果用包含离群值的数据训练模型,我们预测结果在速度很快的数据上会有很大的误差,因为回归线非常陡峭。
检测离群值
1. 单变量检测法
给定一个连续变量后,离群值可以认为是哪些超出1.5倍四分位距的观测点。四分位距(Inter Quartile Range, a.k.a IQR)是0.25分位数和0.75分位数的差,我们可以通过箱线图来检测离群点,在须轴以外的点就是。
url <- "http://rstatistics.net/wp-content/uploads/2015/09/ozone.csv"
# 备用数据源: https://raw.githubusercontent.com/selva86/datasets/master/ozone.csv
inputData <- read.csv(url) # 导入数据
outlier_values <- boxplot.stats(inputData$pressure_height)$out # outlier values.
boxplot(inputData$pressure_height, main="Pressure Height", boxwex=0.1)
mtext(paste("Outliers: ", paste(outlier_values, collapse=", ")), cex=0.6)
2. 双变量检测法
如果有两个变量X和Y,X是分类变量而Y是连续变量,可以绘制在X的不同类别上Y的箱线图来检测离群值。
url <- "http://rstatistics.net/wp-content/uploads/2015/09/ozone.csv"
ozone <- read.csv(url)
# Month和Day_of_Week是分类变量
boxplot(ozone_reading ~ Month, data=ozone, main="Ozone reading across months") # 有明确的模式
boxplot(ozone_reading ~ Day_of_week, data=ozone, main="Ozone reading for days of week") # this may not be significant, as day of week variable is a subset of the month var.
箱线图如下:
上图我们发现每个月的ozone_reading数据有明显变化,但在周内每天的区别并不明显。每一个类别中,在箱线图须轴以外的店就是离群值。
如果X和Y都是连续变量,我们可以将X离散化
boxplot(ozone_reading ~ pressure_height, data=ozone,
main="Boxplot for Pressure height (continuos var) vs Ozone")
boxplot(ozone_reading ~ cut(pressure_height, pretty(inputData$pressure_height)),
data=ozone, main="Boxplot for Pressure height (categorial) vs Ozone", cex.axis=0.5)
结果如下
离散化处理后,你会发现被判定为离群值的点更少,并且ozone_reading随着pressure_height的增加而变化的趋势愈发明确了。
3. 多元模型检测法
仅凭一个特征就判定一个观测值是离群点可能并不科学。利用多个特征的信息来判断个体是否是离群值会更好,这就需要使用Cook距离。
Cook距离可以衡量一个给定的回归模型是否只受单个变量X的影响。Cook距离会极端每一个数据点对预测结果的影响。对于每个观测i,Cook距离会衡量包含i与不包含i时,Y的拟合值的变化,这样我们就知道了i对拟合结果的影响了。
观测i的Cook距离 计算公式如下:
其中:
是使用所有观测计算的第j个y的拟合值
是使用除观测i外所有观测计算的第j个y的拟合值
是均方误差
是回归模型的系数个数
mod <- lm(ozone_reading ~ ., data=ozone)
cooksd <- cooks.distance(mod)
影响评估
一般来说,如果某个观测的Cook距离比平均距离大4倍,我们就可以认为这个点是离群点,当然这不是一个非常死板的判定条件。
plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance") # 绘制Cook距离
abline(h = 4*mean(cooksd, na.rm=T), col="red") # 添加决策线
text(x=1:length(cooksd)+1, y=cooksd, labels=ifelse(cooksd>4*mean(cooksd, na.rm=T),names(cooksd),""), col="red") # 添加标签
结果如下:
现在让我们从原始数据集中找出那些影响力特别大的观测点吧。如果你把它们逐一挑出来了,你就能发现为何它们会有这么大的影响力了——这些观测的在某些变量上的取值过于极端了。
influential 4*mean(cooksd, na.rm=T))]) # 有影响力的观测值行标
head(ozone[influential, ]) # 列出这些观测
#> Month Day_of_month Day_of_week ozone_reading pressure_height Wind_speed Humidity
#> 19 1 19 1 4.07 5680 5 73
#> 23 1 23 5 4.90 5700 5 59
#> 58 2 27 5 22.89 5740 3 47
#> 133 5 12 3 33.04 5880 3 80
#> 135 5 14 5 31.15 5850 4 76
#> 149 5 28 5 4.82 5750 3 76
#> Temperature_Sandburg Temperature_ElMonte Inversion_base_height Pressure_gradient
#> 19 52 56.48 393 -68
#> 23 69 51.08 3044 18
#> 58 53 58.82 885 -4
#> 133 80 73.04 436 0
#> 135 78 71.24 1181 50
#> 149 65 51.08 3644 86
#> Inversion_temperature Visibility
#> 19 69.80 10
#> 23 52.88 150
#> 58 67.10 80
#> 133 86.36 40
#> 135 79.88 17
#> 149 59.36 70
让我们看看前6个观测来看看为什么这些观测富有影响力吧。
第58, 133, 135行的ozone_reading值非常大
第23, 135, 149行的Inversion_bzase_height值非常大
第19行有非常低的Pressure_gradient
离群值检验
car包中的outlierTest函数可以返回指定模型中影响力最大的观测值。
car::outlierTest(mod)
#> No Studentized residuals with Bonferonni p Largest |rstudent|:
#> rstudent unadjusted p-value Bonferonni p
#> 243 3.045756 0.0026525 0.53845
0utliners包
outliers包提供了几个有用的函数来系统地检测出离群值。其中一些函数既便利又好上手,特别是outliers()函数和scores()函数。
outliers()会返回和平均值相比较后最极端的观测,如果你给定参数opposite=TRUE,它会返回位于另一端的观测。
set.seed(1234)
y=rnorm(100)
outlier(y)
#> [1] 2.548991
outlier(y,opposite=TRUE)
#> [1] -2.345698
dim(y) <- c(20,5) # convert it to a matrix
outlier(y)
#> [1] 2.415835 1.102298 1.647817 2.548991 2.121117
outlier(y,opposite=TRUE)
#> [1] -2.345698 -2.180040 -1.806031 -1.390701 -1.372302
scores()函数有两大功能。一是计算规范化得分,诸如z得分,t得分,chisq得分等。它还可以基于上述的得分值,返回那些得分在相应分布百分位数之外的观测值。
set.seed(1234)
x = rnorm(10)
scores(x) # z得分 => (x-mean)/sd
scores(x, type="chisq") # chisq得分 => (x - mean(x))^2/var(x)
#> [1] 0.68458034 0.44007451 2.17210689 3.88421971 0.66539631 . . .
scores(x, type="t") # t得分
scores(x, type="chisq", prob=0.9) # 是否超过chisq分布的0.9分位数
#> [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
scores(x, type="chisq", prob=0.95) # 0.95分位数
scores(x, type="z", prob=0.95) # 基于z得分判定
scores(x, type="t", prob=0.95) # 大家都懂,我懒得翻译了
离群值处理
在寻找到离群值之后,你需要根据处理的实际问题来对它们进行处理,常用方法如下:
1. 插值
使用均值/中位数/众数插值,这个方法在 缺失值的处理 邻领域已被广泛应用。另一种稳健的做法是使用 链式方程 进行多元插值。
2. 封顶
对于那些取值超过1.5倍四分位距的数值,可以分别用该变量5%和95%的分位数替代原数据,下方代码可以实现该过程:
x <- ozone$pressure_height
qnt <- quantile(x, probs=c(.25, .75), na.rm = T)
caps <- quantile(x, probs=c(.05, .95), na.rm = T)
H <- 1.5 * IQR(x, na.rm = T)
x[x < (qnt[1] - H)] (qnt[2] + H)] <- caps[2]
注:该方法和数据预处理中的缩尾(winsorize)处理基本一致,和数理统计中的m统计量思想也类似。
3. 预测
这是另一种思路,将离群值先替换做缺失值,再将其视作被解释变量进行预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30