R语言炫技必备基本功
R语言主要用于统计分析和绘图,可以理解为是一种数学计算软件,可编程,有很多有用的函数库和数据集,它强大的作图工具是做数据分析的好帮手,在高手如云的大数据江湖中,不炫个技都不敢说自己是江湖中人,那么我们就看看想要炫技需要掌握哪些基本功吧
注意:本文中实际使用的样本数据是根据具体命令任意挑选某组样本数据,不具有针对性,因此自己试验可以随意找样本尝试
一个table引发的血案
table函数就是用来输出指定字段的统计表格,可以用来分析数据比例情况,像下面的样子:
> table(full$Title, full$Survived)
0 1
Master 17 23
Miss 55 130
Mr 436 81
Mrs 26 100
Rare Title 15 8
那么为了让table够直观,各路大侠纷纷使出了洪荒之力,注意,下面开始炫技部分:
第一种作图方式(用于观察标准残差的场景):
> mosaicplot(table(full$Title, full$Survived), shade=TRUE)
第二种作图方式(用于观察总数目的场景):
> barplot(table(full$Survived, full$Title), sub="Survival by Title", ylab="number of passengers", col=c("steelblue4","steelblue2"))
> le> barplot(table(full$Survived, full$Title), sub="Survival by Title", ylab="number of passengers", col=c("steelblue4","steelblue2"))
> legend("topleft",legend = c("Died","Survived"),fill=c("steelblue4","steelblue2"),inset = .05)
第三种作图方式(用于观察比例情况的场景):
> barplot(prop.table(table(full$Survived, full$Title),2), sub="Survival by Title", ylab="number of passengers", col=c("steelblue4","steelblue2"))
> legend("topleft",legend = c("Died","Survived"),fill=c("steelblue4","steelblue2"),inset = .05)
当然还可以有第四种作图方式(同样是用于观察比例情况的场景):
> library('ggthemes')
> ggplot(full, aes(x = Title, fill = factor(Survived))) + geom_bar(stat='count', position='fill') + theme_few()
不同风格的决策树
在上节数据缺失填补中我们见过这样一棵决策树:
> library("rpart")
> library("rpart.plot")
> my_tree <- rpart(Fare ~ Pclass + Fsize + Embarked, data = train, method = "class", control=rpart.control(cp=0.0001))
> prp(my_tree, type = 4, extra = 100)
如果我们想看到每个分支的比例关系还可以在枝干上下文章:
> prp(my_tree, type = 2, extra = 100,branch.type=1)
图中根据不同的枝干粗细能看出样本集中在那个分支上
数据总览方式
第一种:按列总览
优点:可以看到有哪些列,什么类型,每一列取值举几个例子,也能看到有多少行
> str(train)
'data.frame': 2197291 obs. of 15 variables:
$ people_id : chr "ppl_100" "ppl_100" "ppl_100" "ppl_100" ...
$ activity_id : chr "act2_1734928" "act2_2434093" "act2_3404049" "act2_3651215" ...
$ date : chr "2023-08-26" "2022-09-27" "2022-09-27" "2023-08-04" ...
$ activity_category: chr "type 4" "type 2" "type 2" "type 2" ...
$ char_1 : chr "" "" "" "" ...
$ char_2 : chr "" "" "" "" ...
$ char_3 : chr "" "" "" "" ...
$ char_4 : chr "" "" "" "" ...
$ char_5 : chr "" "" "" "" ...
$ char_6 : chr "" "" "" "" ...
$ char_7 : chr "" "" "" "" ...
$ char_8 : chr "" "" "" "" ...
$ char_9 : chr "" "" "" "" ...
$ char_10 : chr "type 76" "type 1" "type 1" "type 1" ...
$ outcome : int 0 0 0 0 0 0 1 1 1 1 ...
第二种:分布总览
优点:能看出每一列的最大值、最小值、均值、中位数等分布数据
> summary(train)
comment_count sex has_free_course score
Min. : 0.0 Min. :0.0000 Min. :0.0000 Min. :0.00
1st Qu.: 0.0 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00
Median : 9.0 Median :1.0000 Median :0.0000 Median :4.90
Mean : 397.6 Mean :0.6259 Mean :0.3786 Mean :2.92
3rd Qu.: 169.0 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:5.00
Max. :5409.0 Max. :2.0000 Max. :1.0000 Max. :5.00
第三种:采样浏览
优点:可以抽出其中少数样本看全部信息
> library(dplyr)
> sample_n(train, 4)
> sample_n(train, 4)
people_id activity_id date activity_category char_1 char_2
513235 ppl_184793 act2_3805654 2023-02-25 type 2
1127284 ppl_29203 act2_1960547 2022-09-16 type 5
1174958 ppl_294918 act2_3624924 2022-10-19 type 3
1794311 ppl_390987 act2_633897 2023-02-10 type 2
char_3 char_4 char_5 char_6 char_7 char_8 char_9 char_10 outcome
513235 type 1 0
1127284 type 1349 1
1174958 type 23 0
1794311 type 1 0
第四种:用户友好的表格采样浏览
优点:不自动换行,按表格形式组织,直观
> library(knitr)
> kable(sample_n(train, 4))
> kable(sample_n(train, 4))
| |people_id |activity_id |date |activity_category |char_1 |char_2 |char_3 |char_4 |char_5 |char_6 |char_7 |char_8 |char_9 |char_10 | outcome|
|:-------|:----------|:------------|:----------|:-----------------|:------|:------|:------|:------|:------|:------|:------|:------|:------|:---------|-------:|
|1784154 |ppl_389138 |act2_2793972 |2022-11-03 |type 5 | | | | | | | | | |type 649 | 1|
|1138360 |ppl_294144 |act2_149226 |2022-09-18 |type 5 | | | | | | | | | |type 1058 | 0|
|1698603 |ppl_373844 |act2_3579388 |2022-08-27 |type 4 | | | | | | | | | |type 230 | 0|
|1505324 |ppl_351017 |act2_2570186 |2022-09-30 |type 5 | | | | | | | | | |type 248 | 0|
请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址
R语言中的管道
shell中管道非常方便,比如把一个文件中第二列按数字排序后去重可以写成cat file | awk '{print $2}' | sort -n -k 1 | uniq,那么R语言中的管道怎么用呢?我们先来看一个例子:
> library(dplyr)
> ggplot(filter(train, char_5 != ""), aes(x = outcome, fill = char_5)) + geom_bar(width = 0.6, position = "fill")
这个例子中有以下处理步骤:
1. 拿出train数据
2. 对train数据做过滤,过滤掉char_5这一列为空的样本
3. 用过滤好的数据执行ggplot画图
这三部如果用一层层管道操作就方便多了,实际上R语言为我们提供了这样的管道,即把函数的第一个参数单独提出来作为管道输入,管道操作符是%>%,也就是可以这样执行:
> train %>%
+ filter(char_5 != "") %>%
+ ggplot(aes(x=outcome, fill=char_10))+geom_bar(width=0.6, position="fill")
那么管道到底有什么好处呢?我们来追踪一下实际的过程来体会
假设我们样本长这个样子:
> library(knitr)
> kable(sample_n(train, 4))
| |people_id |activity_id |date |activity_category |char_1 |char_2 |char_3 |char_4 |char_5 |char_6 |char_7 |char_8 |char_9 |char_10 | outcome|
|:-------|:----------|:------------|:----------|:-----------------|:------|:------|:------|:------|:------|:------|:------|:------|:------|:---------|-------:|
|567545 |ppl_194099 |act2_1420548 |2023-02-08 |type 2 | | | | | | | | | |type 1 | 0|
|115164 |ppl_112033 |act2_2209862 |2022-10-23 |type 5 | | | | | | | | | |type 481 | 1|
|1616290 |ppl_369463 |act2_2515098 |2023-07-11 |type 4 | | | | | | | | | |type 295 | 0|
|1714893 |ppl_376799 |act2_1464019 |2022-10-01 |type 5 | | | | | | | | | |type 1907 | 0|
这时我们发现有一些列是空值,如果我希望了解一下其中的char_5都有哪些取值以及比例情况,我们可以这样来做:
> train %>%
+ count(char_5)
# A tibble: 8 × 2
char_5 n
<chr> <int>
1 2039676
2 type 1 49214
3 type 2 26982
4 type 3 6013
5 type 4 1995
6 type 5 5421
7 type 6 67989
8 type 7 1
现在我们看到了输出了char_5和n两列分别表示可能取值和频次,但是还是不够直观,希望画图来看,那么我们继续:
> train %>%
+ count(char_5) %>%
+ ggplot(aes (x = reorder(char_5,n), y = n)) +
+ geom_bar(stat = "identity", fill = "light blue")
发现我们有很多空值,这时我们继续调整:
> train %>%
+ filter(char_5!="") %>%
+ count(char_5) %>%
+ ggplot(aes (x = reorder(char_5,n), y = n)) +
+ geom_bar(stat = "identity", fill = "light blue")
这就是我们的管道的作用:一步一步调试,不需要总想着把参数插到函数的哪个位置
回到本源,最基本的作图
有人会说,R语言怎么总是画这么复杂的图像,但是却连最基本的散点图和折线图都不能画吗?下面回到本源,来展示一下R语言的最基本的作图功能。
> a <- c(49, 26, 69, 19, 54, 67, 19, 33)
> plot(a)
如果希望看到变化趋势,我们可以画折线图,加上type即可
> plot(a, type='b')
如果这是一个每日消费金额,我们想看累积消费怎么办?我们可以利用累积函数cumsum,它的功能像这个样子:
> a
[1] 49 26 69 19 54 67 19 33
> cumsum(a)
[1] 49 75 144 163 217 284 303 336
>
那么可以这样作图:
> plot(cumsum(a), type='b')
最后让我们用一个完美的正弦曲线收笔:
> x1 <- 0:100
> x2 <- x1 * 2 * pi / 100
> Y = sin(x2)
> par(family='STXihei') # 这句是为了解决图像中中文乱码问题
> plot(x2, Y, type='l', main='正弦曲线', xlab='x轴', ylab='y轴')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29