利用R语言也可以制作出漂亮的交互数据可视化,下面和大家分享一些常用的交互可视化的R包。
rCharts包
说起R语言的交互包,第一个想到的应该就是rCharts包。该包直接在R中生成基于D3的Web界面。
rCharts包的安装:
require(devtools) install_github('rCharts', 'ramnathv')
rCharts函数就像lattice函数一样,通过formula、data指定数据源和绘图方式,并通过type指定图表类型。
下面通过例子来了解下其工作原理。我们以鸢尾花数据集为例,首先通过name函数对列名进行重新赋值(去掉单词间的点),然后利用rPlot函数绘制散点图(type=”point”),并利用颜色进行分组(color=”Species”)。
library(rCharts)
names(iris) = gsub("\\.", "", names(iris))
p1 <- rPlot(SepalLength ~ SepalWidth | Species, data = iris, color = 'Species', type = 'point')
p1
rCharts支持多个javascript图表库,每个都有自己的长处。每一个图表库有多个定制选项,其中大部分rCharts都支持。
NVD3 是一个旨在建立可复用的图表和组件的 d3.js 项目——它提供了同样强大的功能,但更容易使用。它可以让我们处理复杂的数据集来创建更高级的可视化。在rCharts包中提供了nPlot函数来实现。
下面以眼睛和头发颜色的数据(HairEyeColor)为例说明nPlot绘图的基本原理。我们按照眼睛的颜色进行分组(group=”eye”),对头发颜色人数绘制柱状图,并将类型设置为柱状图组合方式(type=”multiBarChart”),这样可以实现分组和叠加效果。
library(rCharts)
hair_eye_male <- subset(as.data.frame(HairEyeColor), Sex == "Male")
hair_eye_male[,1] <- paste0("Hair",hair_eye_male[,1])
hair_eye_male[,2] <- paste0("Eye",hair_eye_male[,2])
n1 <- nPlot(Freq ~ Hair, group = "Eye", data = hair_eye_male,
type = "multiBarChart")
n1
可以通过图形右上角选择需要查看或隐藏的类别(默认是全部类别显示的),也能通过左上角选择柱子是按照分组还是叠加的方式进行摆放(默认是分组方式)。如果选择Stacked,就会绘制叠加柱状图。
Highcharts是一个制作图表的纯Javascript类库,支持大部分的图表类型:直线图,曲线图、区域图、区域曲线图、柱状图、饼状图、散布图等。在rCharts包中提供了hPlot函数来实现。
以MASS包中的学生调查数据集survery为例,说明hPlot绘图的基本原理。我们绘制学生身高和每分钟脉搏跳动次数的气泡图,以年龄变量作为调整气泡大小的变量。
library(rCharts)
a <- hPlot(Pulse ~ Height, data = MASS::survey, type = "bubble",
title = "Zoom demo", subtitle = "bubble chart",
size = "Age", group = "Exer")
a$colors('rgba(223, 83, 83, .5)', 'rgba(119, 152, 191, .5)',
'rgba(60, 179, 113, .5)')
a$chart(zoomType = "xy")
a$exporting(enabled = T)
a
rCharts包可以画出更多漂亮的交互图, http://ramnathv.github.io/rCharts/和https://github.com/ramnathv/rCharts/tree/master/demo有更多的例子可供大家学习。
recharts包
学习完rCharts包,可能有读者会问,我们有没有国人开发的包实现相似的效果呢?这边给大家推荐一个同样功能强大的recharts包。
本包来源于百度开发的国内顶尖水平的开源d3-js可视项目Echarts(Github Repo)。Yang Zhou和Taiyun Wei基于该工具开发了recharts包,经Yihui Xie修改后,可通过htmlwidgets传递js参数,大大简化了开发难度。但此包开发仍未完成。为了赶紧上手用,基于该包做了一个函数echartR(下载至本地,以后通过source命令加载),用于制作基础Echart交互图。需要R版本>=3.2.0.
安装方式如下:
library(devtools)
install_github('yihui/recharts')
安装完后,需要在https://github.com/madlogos/recharts/blob/master/R/echartR.R将echartR.R脚本下载到本地。
假如想对鸢尾花数据集绘制散点图,可以执行如下代码:
source("~echartR.R")
names(iris) = gsub("\\.", "", names(iris))
echartR(data=iris,x=~SepalLength,y=~PetalWidth,series = ~Species,
type = 'scatter')
绘制柱状图:
hair_eye_male <- subset(as.data.frame(HairEyeColor), Sex == "Male")
hair_eye_male[,1] <- paste0("Hair",hair_eye_male[,1])
hair_eye_male[,2] <- paste0("Eye",hair_eye_male[,2])
echartR(data = hair_eye_male, x = Hair, y = ~Freq, series = ~Eye,
type = 'bar', palette='fivethirtyeight',
xlab = 'Hair', ylab = 'Freq')
玫瑰图:
dtcars <- mtcars
dtcars$car <- row.names(dtcars)
dtcars$transmission <- as.factor(dtcars$am)
levels(dtcars$transmission) <- c("Automatic","Manual")
dtcars$cylinder <- as.factor(dtcars$cyl)
dtcars$carburetor <-as.factor(dtcars$carb)
echartR(dtcars, x = ~cylinder, y = ~car, type='rose',
palette='colorblind', title='Number of Cylinders',
subtitle = '(source: mtcars)')
雷达图:
player <- data.frame(name=c(rep("Philipp Lahm",8),rep("Dani Alves",8)),
para=rep(c("Passing%","Key passing","Comp crosses",
"Crossing%","Successful dribbles",
"Dispossessed","Dribbled past","Fouls"),2),
value=c(89.67, 1.51, 0.97, 24.32, 0.83, 0.86, 1.15, 0.47,
86.62, 2.11, 0.99, 20.78, 1.58, 1.64, 0.9, 1.71))
echartR(player, x= ~para, y= ~value, series= ~name, type='radarfill',
symbolList='none', palette=c('firebrick1','dodgerblue'),
title='Lahm vs Alves', subtitle= '(by @mixedknuts)')
plotly包
接下来要给大家介绍的是另一个功能强大的plotly包。它是一个基于浏览器的交互式图表库,它建立在开源的JavaScript图表库plotly.js之上。
有两种安装方式:
install.packages("plotly")
或者
devtools::install_github("ropensci/plotly")
plotly包利用函数plot_ly函数绘制交互图。
如果相对鸢尾花数据集绘制散点图,需要将mode参数设置为”markers”。
library(plotly)
p <- plot_ly(iris, x = Petal.Length, y = Petal.Width,
color = Species, colors = "Set1", mode = "markers")
p
如果想绘制交互箱线图,需要将type参数设置为box。
library(plotly)
plot_ly(midwest, x = percollege, color = state, type = "box")
如果你已熟悉ggplot2的绘图系统,也可以针对ggplot2绘制的对象p,利用ggplotly函数实现交互效果。例如我们想对ggplot绘制的密度图实现交互效果,执行以下代码即可:
library(plotly)
p <- ggplot(data=lattice::singer,aes(x=height,fill=voice.part))+
geom_density()+
facet_grid(voice.part~.)
(gg <- ggplotly(p))
其他
此外还有很多好玩有用的交互包。例如专门用来画交互时序图的dygraphs包,可通过install.packages(“dygraphs”)安装。
library(dygraphs)
lungDeaths <- cbind(mdeaths, fdeaths)
dygraph(lungDeaths) %>%
dySeries("mdeaths", label = "Male") %>%
dySeries("fdeaths", label = "Female") %>%
dyOptions(stackedGraph = TRUE) %>%
dyRangeSelector(height = 20)
DT包实现R数据对象可以在HTML页面中实现过滤、分页、排序以及其他许多功能。通过install.packages(“DT”)安装。
以鸢尾花数据集iris为例,执行以下代码:
library(DT)
datatable(iris)
networkD3包可实现D3 JavaScript的网络图,通过install.packages(“networkD3”)安装。
下面是绘制一个力导向的网络图的例子。
library(treemap)
library(d3treeR)
data("GNI2014")
tm <- treemap(
GNI2014,
index=c("continent", "iso3"),
vSize="population",
vColor="GNI",
type="value"
)
d3tree( tm,rootname = "World" )
我们可以通过d3treeR包绘制交互treemap图,利用
devtools::install_github("timelyportfolio/d3treeR")
完成d3treeR包安装。
library(treemap)
library(d3treeR)
data("GNI2014")
tm <- treemap(
GNI2014,
index=c("continent", "iso3"),
vSize="population",
vColor="GNI",
type="value"
)
d3tree( tm,rootname = "World" )
本文主要是介绍了几个R常用的交互包。在R的环境中,动态交互图形的优势在于能和knitr、shiny等框架整合在一起,能迅速建立一套可视化原型系统。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29