R语言apply族函数详解
在R语言中,apply系列函数的基本作用是对数组(array,可以是多维)或者列表(list)按照元素或元素构成的子集合进行迭代,并将当前元素或子集合作为参数调用某个指定函数。apply族函数分别有apply函数,tapply函数,lapply函数,mapply函数。每一个函数都有自己的特点,在处理不同类型的数据可以选用相对应的函数。apply族函数分别有apply函数,tapply函数,lapply函数,mapply函数。每一个函数都有自己的特点,在处理不同类型的数据可以选用相对应的函数。
1、 apply函数
apply函数只能用于处理矩阵类型的数据,也就是说所有的数据必须是同一类型。因此要使用apply函数的话,需要将数据类型转换成矩阵类型。
apply函数一般有三个参数,第一个参数代表矩阵对象,第二个参数代表要操作矩阵的维度,1表示对行进行处理,2表示对列进行处理。第三个参数就是处理数据的函数。apply会分别一行或一列处理该矩阵的数据。
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
a<-matrix(1:12,nrow=3)
a
#求每列的平均值
apply(a,2,mean)
其中a是一个3*4的矩阵,如下。运行结果为 2 5 8 11
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
我们也可以使用colMeans(),rowMeans( ),对矩阵的列和行分别求平均值,rowSums( ),colSums(),,对矩阵的列和行分别求和。
如过数据中NA,那么在求行列的平均值或和的时候,NA所在的行列的计算结果也没NA。
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
apply(a,1,mean,na.rm=TRUE)
这样的话,它会自动忽略NA,只计算其他不是NA的值。rowMeans( )中也可以添加na.rm=TRUE参数。效果相同。
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
#矩阵中添加了一个na
a[2,1]<-NA
#不计算NA存在的那一行或那一列
apply(a,1,mean)
这个时候矩阵为
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] NA 5 8 11
[3,] 3 6 9 12
结果为[1] 5.5 NA 7.5。如果代码写成下面这个样子
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
apply(a,1,mean,na.rm=TRUE)
结果为 5.5 8.0 7.5
2、lapply和sapply函数
lapply和sapply函数可以用于处理列表数据和向量数据(vector/list)。lapply函数得到处理得到的数据类型是列表,而sapply函数得到处理的数据类型是向量。这两个函数除了在返回值类型不同外,其他方面基本完全一样。
3、tapply函数
它通常会有三个参数,第一个参数代表数据,第二个参数表示如何对数据进行分组操作,第三个参数指定每一个分组内应用什么函数。也就是说tapply函数就是把数据按照一定方式分成不同的组,再在每一组数据内进行某种运算。
4、mapply函数
mapply函数主要是对多个列表或者向量参数使用函数
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21