大数据将助企业更好实现商业价值
大数据将帮助企业更好地实现商业价值,以及通过改善商业智能来帮助企业改变组织流程和客户体验。
2016年,各行各业的大数据应用开始从空洞的理论变为具体实践。因此,很多专家认为2016年才是真正意义上的大数据元年。那么,2017年大数据发展趋势主要集中在哪些方面?为此,本报记者近日采访了中兴飞流信息科技公司CTO郑龙。
大数据时代数据处理有三个特点
记者:大数据时代,如何从海量数据中分析得到需要的数据,是很多公司的努力方向。在您看来,大数据时代数据处理的特点是什么?
郑龙:总体来说大数据时代数据处理的特点包括三个方面:一是海量实时流数据需要高吞吐、低延时处理能力。实时事件、交易、交互数量每秒以百万计,由此产生的数据兼具海量与实时的特性,自然会给大数据处理系统造成巨大的压力,需要具备强大的并行计算能力,需要同时满足高吞吐、低延时的特点。可见实时处理是大数据发展的重大趋势。
二是基于Lambda架构的动态流批混合处理能力。目前市场上流行的流式处理系统有Spark Streaming和Storm。但还是存在计算延时仍然无法保障以及资源调度低效等缺点。Lambda架构整合离线计算和实时计算,融合不可变性(Immunability),是一个能满足实时大数据系统关键特性(如高容错、低延时和可扩展等)的架构。基于Lambda架构的统一流批混合处理平台,可以动态感知批处理或流处理的优先级,使得资源高效调度成为可能。
三是面向高度数据智能需求的大数据处理能力。当下业务场景除了对实时性要求越来越严格,业务场景的复杂程度也越来越高,数据分析、决策支持将成为大数据的重要应用。如今结合智能计算的大数据分析逐渐成为热点,包括大数据与神经计算、深度学习、语义计算以及人工智能其他相关技术结合,成为大数据分析领域的热点。
未来大数据将从三个方面快速发展
记者:未来大数据的发展方向是什么?
郑龙:大数据将帮助企业更好地实现商业价值,以及通过智能化手段来帮助企业改变组织流程和客户体验。未来大数据的发展方向包括以下几个方面——
一是机器学习将在图像识别、预测分析等领域实现商业化。Gartner研究报告称,机器学习是2017年十大战略技术趋势之一。当今最先进的机器学习和人工智能系统正在超越传统的基于规则的算法,创建出能够理解、学习、预测、适应,甚至可以自主操作的系统。随着大数据分析能力的不断提高,很多企业开始投资机器学习。
二是高吞吐、低延时的实时数据处理技术广泛运用。典型的实时数据将产生于临床实验与医疗设备、疫情预警、保险欺诈检测、电信运营商DPI分析及位置定位业务、智能电网的生产及勘探设备、交通行业路线拥堵及车辆追踪等领域。鉴于这样的流数据的分布广,影响大,所以,对于全行业大数据应用都是非常重要的组成。
业务需求驱动高吞吐、低延时的流数据处理技术应运而生,离线计算和实时计算需要在统一框架中予以动态调配完美融合,而幸运的是,这样的技术已经浮出水面,商业模式也已呼之欲出。
三是物联网与大数据的结合愈加紧密。数十亿与互联网连接的“物件”将生产大量数据。企业日益期望从这些数据中获得价值,通过发展大数据技术以便与物联网数据衔接起来。Forrester报告预计,可提供物联网洞察能力分析的第三方供应商在2017年将翻一番。
Yita是基于数据流的大数据计算引擎
记者:在您看来,什么是数据流?
郑龙:为了提高计算机的并行处理能力,人们一直致力于研发高度并行的计算模型,在这样的计算模型中,不仅要考虑数据控制类型,更要考虑驱动方式。
数据流跟控制流的区别可以简单理解为市场经济和计划经济的区别,控制流处理过程中会预先设定好每一步该干什么,然而在数据处理的实际过程中,如果有动态的变化,就没有办法处理和调整,有点类似于计划经济。相反,数据流更加像市场经济,它只规定了市场经济的准则,只要有资金、有技术、有人就开始执行。在实际处理过程中,只要有数据、计算资源、CPU就可以让任务启动起来。这样就减少了计算中的控制同步等待,从而实时性更强。
记者:正是看到了数据流模型在大数据处理方面的优势,中兴飞流推出了基于数据流模型的Yita大数据计算引擎。您能谈谈Yita大数据计算引擎的具体情况吗?
郑龙:目前数据流思想在中国的落地正是Yita计算引擎。这个从运算机理上进行创新的计算框架,不仅面对海量高压数据场景处理更加游刃有余,而且使用Lambda架构动态感知处理方式的优先级,可以进行流批混合计算,同时有机结合了机器学习能力、图计算能力和深度学习能力,最终实现了以Yita计算引擎为核心的大数据平台的智能化。
中国大数据企业需在核心技术上下功夫
记者:目前在大数据领域,我国企业需要在哪些方面下功夫?
郑龙:目前我们可以很明显看到,在系统软件领域没有一款产品是纯自主研发的。从技术角度来说这是一个很严重的问题。
中国企业要拿出核心竞争力,在大数据技术发展中占据一席之地,就如通讯业从3G向4G、5G的发展进程中,中国企业不再被牵着鼻子走,而是开始发出自己的声音,引领技术的发展,这是我国企业在技术层面需要重视的事情。
记者:作为大数据技术公司,中兴飞流着眼点在什么领域?
郑龙:作为专业从事创新大数据核心技术研发和服务的高科技软件企业,中兴飞流提供具有核心自主知识产权的大数据技术及解决方案。核心产品是以数据流思想为理论基础的Yita计算引擎,基于该计算引擎的JDH大数据平台,辅以丰富的算法库,构建了融合hadoop生态的、面向海量实时和流批混合计算的行业大数据整体解决方案。主要面向电信运营商领域、金融领域和交通、公安等政府领域,持续创造和提供具有竞争力的产品和应用,实现“数据智慧,极速共享”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17