SPSS-数据处理-数据变量
spss工具中”行“用【个案】表示,“列”用【变量】表示。变量其实也就是我们在数据库中称之为字段的概念。但是在统计学中,我们称之为变量。
接下来主要介绍两点有关变量的基础知识:一、变量的数据类型 二、变量的尺度
一、变量的数据类型
从所周知,变量分为不同的数据类型,分别是:a:数值型数据、b:字符型数据、c:日期型数据。
a:数值型数据:直接使用自然数或度量单位进行计量的数值数据。例如:收入、年龄、体重、身高这几个变量均为数值型数据。可以直接用算术运算方法进行汇总和分析,这是区分是否是数值型数据的重要特征。
b:字符型数据:也成为文本数据,由字符串组成,它是不能进行算术运算的文字数据类型。它包括中文字符、英文字符、数字字符(非数值型)等字符。例如姓名、性别、省份这几个变量均为字符型数据。字符型数据是一种分类数据,例如性别可以分为男、女两类。省份可以分为好多省,我们可以通过对这些分类数据进行分类研究,从而更全面的掌握事务特征。
c:日期型数据:用于表示日期或时间数据,它可以进行算术运算,所以它是一种特殊的数值型数据。主要应用在时间序列分析中。
二、变量的尺度
上面介绍的数据类型主要是数据库中的语言,有的时候仅用数据类型不能准确的说明变量的含义和属性。为了更好的说明变量的含义和属性,在统计学中就采用了变量尺度这个概念。举例:
职业变量,1代表白领、2代表蓝领、3代表金领,这时1、2、3只是个标记,属于并列关系,没有次序关系。
职级变量,1代表初级、2代表中级、3代表高级,这时1、2、3不只是个标记,还有次序关系。
年龄变量,1代表1岁、 2代表2岁、 3代表3岁, 这时1、2、3不只是个标记,还有次序、大小关系,可以做算术运算。
职业职级年龄三个变量的数据类型都是数值型,但数值的集体含义不同,适用的统计方法也不同,这时就必须给数据变量增加一个测量尺度属性。
尺度属性从低到高分为四个层级:a:定类尺度、b:定序尺度、c:定距尺度、d:定比尺度。
a:定类尺度:是对事物类别和属性的一种测度。 特点:其值只能代表事物的类别和属性,不能比较各类别之间的大小,例如性别、职业这两个变量。spss中用【名义(N)】表示。
b:定序尺度:是对事物之间等级或者顺序的一种测度。 特点:其计算结果只能排序, 不能进行算术运算, 例如学历、职级这两个变量。spss中用【序号(O)】表示。
c:定距尺度:是对事物次序之间间距的一种测度,只可以进行加减运算、不能进行乘除运算,不仅能对事物进行排序,还能准确计算次序之间的差距是多少,例如温度、时间这两个变量。spss中用【度量(S)】表示。
d:定比尺度:是测量两个测量值之间比值的一种测度。它能够进行加减乘除运算,例如收入、用户数这两个变量。它与定距尺度最大的区别在于它有一个固定的绝对“0”值,而定距尺度没有。在定距尺度中“0”不表示没有,它只是一个测量值;而在定比变量中“0”就表示没有。spss中用【度量(S)】表示。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29