用户研究基础流程和SPSS快速数据处理
尽管基于在线行为监测的业务数据分析越来越被企业重视,在用户研究领域,问卷调查仍是量化评估用户体验的主要手段。一个典型的用户研究项目,通常会包含以下六个环节:
一、需求沟通:与客户/业务方/以及自己,确认清楚研究要解决的问题和实现的价值
二、问卷部署:关键环节。前期设计很大程度上决定了后期产出的质量。澄清三个问题:
询问谁(目标群体):首要界定清楚调查的具体对象,这可能直接影响问卷设计的内容(尤其甄别问题)和执行渠道。
问什么(问卷设计):先确定研究框架,划定问卷包括那几个板块,再逐一细化内容和逻辑。通常建议先在 Word/Excel 中完成最终问卷版本,再录入到在线问卷系统(而非一开始就在问卷系统中直接设计),然后测试。
哪里问(执行渠道):问卷调查的执行渠道主要包括在线调查、电话调查、线下调查(街头拦访、上门等)。在线调查中,第三方研究公司往往依赖 Online Panel(在线样本库),企业方自己的调查主要基于自有渠道如网页入口、系统消息、邮件推送等,各有利弊。
三、调查执行:从样本回收正式启动到结束。在线消息/邮件一次性推送的项目,通常周期 5-7 天,前三天会回收到 80% 以上的样本量。
四、数据处理:本文重点,稍后细说。
五、报告撰写:基于问卷调查的结果,结合研究者分析,撰写研究报告。就问卷调查项目而言,研究报告本质上是数据可视化和观点提炼的过程。
六、问题推进:报告汇报从来都不是项目的终点。对于市场研究公司从业者,后续还要关注客户付款(囧~)。作为企业方用研,推动并解决问题是最终目的,而这个过程往往比催客户付款更加坑爹。
聚焦到数据处理环节。首先,我们为什么要学习数据处理?
在分工高度专业化的研究公司,会有专职的 DP(Data Processor),而在企业方做用户研究多数情况下得靠自己。所以作为行业一线从业者,掌握数据处理的基本技能是有必要的;同时,清楚数据处理的过程本身,也能加深我们对数据结果的理解。
广义的数据处理,可以从很多角度进行解释,这里不作讨论。本文仅针对市场研究/用户研究领域最常见的数据处理需求,即对调研结果做出描述性统计,包含三个节点:
一、输入:问卷系统后台原始记录的一条条编码信息(Raw Data)
二、处理:统计工具
三、输出:可分析的直观统计数据(Data Table)
显然,描述性统计处理是简单的,Excel 透视表就可以完成,之所以仍要使用专业统计软件,处理的效率才是关键。数据处理的效率包括几个方面:
一、完成全部统计结果的速度
二、统计结果便于阅读和理解
三、统计结果更新的灵活性(如增减样本、多维度交叉等)
以上三个方面,决定了统计软件比 Excel 更加高效。那么使用什么统计软件呢?最推荐的还是 SPSS,原因是:
一、点点点操作,容易上手
二、编程规则简单,且可以将操作直接记录为脚本
三、功能全面,满足大多数需求
四、普及率最高,破解版你懂的
SPSS(Statistical Product and Service Solutions),全称统计产品与服务解决方案,国内通常按字母直读S-P-S-S,也有念S-PA-S或S-BA-S。简单介绍下 SPSS 的历史:
1968年,三个无聊的美帝学生搞出了SPSS
2010年,SPSS 被 IBM 收购,稳定每年8月一次迭代
2015年,最新版本 24.0
针对 SPSS 产品基础介绍的信息网上很多,这里只介绍如何快速跑出我们需要的描述性统计数据表和对应基础编程语法。
正式开始数据处理,我们首先要思考的不是当前该怎么操作,而是报告撰写需要哪些数据,然后反推数据表应该长什么样子,再决定处理环节做哪些准备。
在 SPSS 实际处理的环节,又分为以下两步:
一、数据准备环节,包括:(英文对应编程命令标题)
基础:给数据打标签(告诉程序原始数据中每个编码对应的含义)
变量标签 VARIABLELABELS
值标签 VALUELABELS
定义多选题 MRSETS
重点:生成新数据
编码为新变量 RECODE
计算变量 IF /COMPUTE
进阶:其他常见数据转化
合并文件 MERGE
加权 WEIGHT
离散 BINNING
抽样 SAMPLE
上述操作中,给数据打标签的基础环节几乎每个项目都需要做,而且耗时。通过 SPSS 编程可以大幅提高效率,这里所谓编程,其实只需要在 Excel 中按照指定命令名称和格式,整理好题目和选项对应关系,粘贴进编辑器运行即可。
二、拉了个表:
SPSS 提供了强大交叉表(Cross Table)功能,可以根据需要自由组合输出结果,随意横着拉、竖着拉、多级交叉,具体效果需要在实战中体会。需要关注的设置点包括:输出格式、对类别排序、添加类别、显著性检验等。尤其重要的是,与 SPSS 的其他多数窗口点选操作一样,设置完成后,可以点击「粘贴」,将本次设置记录为编程语法,供后续重复使用或灵活修改。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20