用户研究基础流程和SPSS快速数据处理
尽管基于在线行为监测的业务数据分析越来越被企业重视,在用户研究领域,问卷调查仍是量化评估用户体验的主要手段。一个典型的用户研究项目,通常会包含以下六个环节:
一、需求沟通:与客户/业务方/以及自己,确认清楚研究要解决的问题和实现的价值
二、问卷部署:关键环节。前期设计很大程度上决定了后期产出的质量。澄清三个问题:
询问谁(目标群体):首要界定清楚调查的具体对象,这可能直接影响问卷设计的内容(尤其甄别问题)和执行渠道。
问什么(问卷设计):先确定研究框架,划定问卷包括那几个板块,再逐一细化内容和逻辑。通常建议先在 Word/Excel 中完成最终问卷版本,再录入到在线问卷系统(而非一开始就在问卷系统中直接设计),然后测试。
哪里问(执行渠道):问卷调查的执行渠道主要包括在线调查、电话调查、线下调查(街头拦访、上门等)。在线调查中,第三方研究公司往往依赖 Online Panel(在线样本库),企业方自己的调查主要基于自有渠道如网页入口、系统消息、邮件推送等,各有利弊。
三、调查执行:从样本回收正式启动到结束。在线消息/邮件一次性推送的项目,通常周期 5-7 天,前三天会回收到 80% 以上的样本量。
四、数据处理:本文重点,稍后细说。
五、报告撰写:基于问卷调查的结果,结合研究者分析,撰写研究报告。就问卷调查项目而言,研究报告本质上是数据可视化和观点提炼的过程。
六、问题推进:报告汇报从来都不是项目的终点。对于市场研究公司从业者,后续还要关注客户付款(囧~)。作为企业方用研,推动并解决问题是最终目的,而这个过程往往比催客户付款更加坑爹。
聚焦到数据处理环节。首先,我们为什么要学习数据处理?
在分工高度专业化的研究公司,会有专职的 DP(Data Processor),而在企业方做用户研究多数情况下得靠自己。所以作为行业一线从业者,掌握数据处理的基本技能是有必要的;同时,清楚数据处理的过程本身,也能加深我们对数据结果的理解。
广义的数据处理,可以从很多角度进行解释,这里不作讨论。本文仅针对市场研究/用户研究领域最常见的数据处理需求,即对调研结果做出描述性统计,包含三个节点:
一、输入:问卷系统后台原始记录的一条条编码信息(Raw Data)
二、处理:统计工具
三、输出:可分析的直观统计数据(Data Table)
显然,描述性统计处理是简单的,Excel 透视表就可以完成,之所以仍要使用专业统计软件,处理的效率才是关键。数据处理的效率包括几个方面:
一、完成全部统计结果的速度
二、统计结果便于阅读和理解
三、统计结果更新的灵活性(如增减样本、多维度交叉等)
以上三个方面,决定了统计软件比 Excel 更加高效。那么使用什么统计软件呢?最推荐的还是 SPSS,原因是:
一、点点点操作,容易上手
二、编程规则简单,且可以将操作直接记录为脚本
三、功能全面,满足大多数需求
四、普及率最高,破解版你懂的
SPSS(Statistical Product and Service Solutions),全称统计产品与服务解决方案,国内通常按字母直读S-P-S-S,也有念S-PA-S或S-BA-S。简单介绍下 SPSS 的历史:
1968年,三个无聊的美帝学生搞出了SPSS
2010年,SPSS 被 IBM 收购,稳定每年8月一次迭代
2015年,最新版本 24.0
针对 SPSS 产品基础介绍的信息网上很多,这里只介绍如何快速跑出我们需要的描述性统计数据表和对应基础编程语法。
正式开始数据处理,我们首先要思考的不是当前该怎么操作,而是报告撰写需要哪些数据,然后反推数据表应该长什么样子,再决定处理环节做哪些准备。
在 SPSS 实际处理的环节,又分为以下两步:
一、数据准备环节,包括:(英文对应编程命令标题)
基础:给数据打标签(告诉程序原始数据中每个编码对应的含义)
变量标签 VARIABLELABELS
值标签 VALUELABELS
定义多选题 MRSETS
重点:生成新数据
编码为新变量 RECODE
计算变量 IF /COMPUTE
进阶:其他常见数据转化
合并文件 MERGE
加权 WEIGHT
离散 BINNING
抽样 SAMPLE
上述操作中,给数据打标签的基础环节几乎每个项目都需要做,而且耗时。通过 SPSS 编程可以大幅提高效率,这里所谓编程,其实只需要在 Excel 中按照指定命令名称和格式,整理好题目和选项对应关系,粘贴进编辑器运行即可。
二、拉了个表:
SPSS 提供了强大交叉表(Cross Table)功能,可以根据需要自由组合输出结果,随意横着拉、竖着拉、多级交叉,具体效果需要在实战中体会。需要关注的设置点包括:输出格式、对类别排序、添加类别、显著性检验等。尤其重要的是,与 SPSS 的其他多数窗口点选操作一样,设置完成后,可以点击「粘贴」,将本次设置记录为编程语法,供后续重复使用或灵活修改。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12