Pandas json_normalize 函数使用教程介绍
json_normalize 是 Pandas 库中一个强大的函数,用于将嵌套的 JSON 数据规范化成平面的 DataFrame。这对于处理包含嵌套结构的 JSON 数据非常有用,使其更容易分析和操作。在本教程中,我们将深入介绍 json_normalize 函数,并通过通俗的例子帮助你理解其参数的作用。
安装 Pandas
首先,确保你已经安装了 Pandas。如果没有安装,可以使用以下命令进行安装:pip install pandas使用 json_normalize基本用法让我们从最基本的用法开始。假设有如下嵌套的 JSON 数据:{
"name":"John",
"age":30,
"address":{
"city":"New York",
"zip":"10001"
}
}
}
现在我们将使用 json_normalize 将其规范化成 DataFrame:import pandas as pd
# 嵌套的 JSON 数据
data = {
"name": "John",
"age": 30,
"address": {
"city": "New York",
"zip": "10001"
}
}
# 使用 json_normalize 规范化
df = pd.json_normalize(data)
# 打印 DataFrame
print(df)
print(df) 运行上述代码,你将得到一个包含规范化数据的 DataFrame。处理嵌套数组json_normalize 也可以处理包含嵌套数组的 JSON 数据。
考虑以下 JSON:{
"name":"John",
"age":30,
"skills":[
{"language":"Python", "level":"Intermediate"},
{"language":"JavaScript", "level":"Advanced"}
]
}
}
我们可以使用 record_path 参数指定要规范化的嵌套数组:# 嵌套数组的 JSON 数据
data_with_array = {
"name": "John",
"age": 30,
"skills": [
{"language": "Python", "level": "Intermediate"},
{"language": "JavaScript", "level": "Advanced"}
]
}
# 使用 json_normalize 规范化,指定嵌套数组路径
df_with_array = pd.json_normalize(data_with_array, record_path='skills')
# 打印 DataFrame
print(df_with_array)
通过指定 record_path 参数,我们将嵌套数组规范化成了 DataFrame。处理嵌套 JSONjson_normalize 还支持处理嵌套的 JSON 结构。
考虑以下 JSON: {
"name":"John",
"age":30,
"contact":{
"email":"john@example.com",
"phone":{
"home":"123-456-7890",
"work":"987-654-3210"
}
}
}
我们可以使用 sep 参数指定嵌套层次的分隔符:# 嵌套 JSON 数据
data_nested = {
"name": "John",
"age": 30,
"contact": {
"email": "john@example.com",
"phone": {
"home": "123-456-7890",
"work": "987-654-3210"
}
}
}
# 使用 json_normalize 规范化,指定嵌套层次分隔符
df_nested = pd.json_normalize(data_nested, sep='_')
# 打印 DataFrame
print(df_nested)
print(df_nested)在这个例子中,我们通过指定 sep 参数,将嵌套的 JSON 结构规范化成了 DataFrame。
总结
通过本教程,你学习了如何使用 Pandas 中的 json_normalize 函数将嵌套的 JSON 数据规范化成易于处理的 DataFrame。我们介绍了基本用法以及如何处理嵌套数组和嵌套 JSON 结构。希望这些通俗易懂的例子能够帮助你更好地理解 json_normalize 函数的使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10